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Abstract

RainbowFS proposes a “just-right” approach to storage and consistency, for developing
distributed, cloud-scale applications. Existing approaches shoehorn the application design to
some predefined consistency model, but no single model is appropriate for all uses. Instead,
we propose tools to co-design the application and its consistency protocol. Our approach
reconciles the conflicting requirements of availability vs. safety: common-case operations are
designed to be asynchronous; synchronisation is used only when strictly necessary to satisfy
the application’s integrity invariants. Furthermore, we deconstruct classical consistency
models into orthogonal primitives that the developer can compose efficiently, and provide a
number of tools for quick, efficient and correct cloud-scale deployment and execution. Using
this methodology, we will develop an entreprise-grade, highly-scalable file system, exploring
the rainbow of possible semantics, which we will demonstrate in a massive experiment.

Keywords: Cloud Computing; Consistency; File Systems; Storage; Geo-Replication; Static
Verification; Distributed Application Software Engineering; Big Data.

1



CONTENTS

I Administrative information / Informations
administratives 3

I.1 Table of people involved in the project
/ Tableau récapitulatif des personnes
impliquées dans le projet . . . . . . . 3

I.2 Changes from the pre-proposal /
Évolutions éventuelles par rapport à
la pré-proposition . . . . . . . . . . . 3

II Context, positioning and objectives of
the detailed proposal / Contexte, position-
nement et objectif de la proposition dé-
taillée 3

II.1 Objectives and challenges . . . . . . . 3

II.2 Context . . . . . . . . . . . . . . . . 5

II.3 Project outcomes, results, and products 6

II.4 Related work and partners’ previous
contributions . . . . . . . . . . . . . 7

II.4.1 Strong consistency . . . . . . 7

II.4.2 Availability and weak consist-
ency . . . . . . . . . . . . . . 8

II.4.3 Hybrid consistency . . . . . . 8

II.4.4 Modular consistency . . . . . 8

II.4.5 File systems . . . . . . . . . . 9

II.5 Relation with ANR and European
work programmes . . . . . . . . . . . 9

II.6 Feasibility, risks and risk mitigation . 9

III Scientific and technological programme,
project organisation / Programme scienti-
fique et technique, organisation du projet 10

III.1 Decomposition into tasks . . . . . . . 10

Task 1: Application co-design . . . 12

Task 2: Modular geo-replication . 14

Task 3: Geo-replicated massive file
system . . . . . . . . . . . . 16

III.2 Project organisation . . . . . . . . . 19

III.3 Scientific explanation of funding request 19

III.4 Project partners . . . . . . . . . . . . 21

III.4.1 Consortium as a whole . . . . 21

III.4.2 Principal Investigator . . . . . 21

III.4.3 Inria Paris (Projet Regal) . . . 21

III.4.4 CNRS Laboratoire d’Informatique
de Grenoble (LIG) . . . . . . 22

III.4.5 Télécom SudParis . . . . . . 22

III.4.6 Scality S.A. . . . . . . . . . . 22

IV Impact of project, strategy for take-up, pro-
tection and exploitation of results / Impact
du projet, stratégie de valorisation, de pro-
tection et d’exploitation des résultats 22

IV.1 Impact . . . . . . . . . . . . . . . . . 22

IV.1.1 Economic Impact . . . . . . . 22

IV.1.2 Practical Impact . . . . . . . 23

IV.1.3 Scientific Impact . . . . . . . 23

IV.2 How the project addresses the challenges 23

IV.3 Scientific communication and uptake . 23

IV.4 Intellectual property and exploitation
of results . . . . . . . . . . . . . . . . 24

IV.5 Industrial exploitation . . . . . . . . . 24

2



I ADMINISTRATIVE INFORMATION / INFORMATIONS ADMINISTRATIVES

I.1 Table of people involved in the project
/ Tableau récapitulatif des personnes im-
pliquées dans le projet

Table 1 summarises the people involved in the project.

Table 2 shows how the manpower is distributed, first
by partner and task, second by partner and type.

I.2 Changes from the pre-proposal / Évolu-
tions éventuelles par rapport à la pré-
proposition

The major change with respect to the first-phase sum-
mary is the requested duration of the funding period.

ANR plans to announce the funding decision in July
2016. As this is a very unfavourable period for re-
cruiting the best PhD students, we are requesting a
48-month duration of the funding period to cope with
uncertainty. The workplan itself takes 36 months, with
M 01 starting when the project students and staff is
hired.

The budget has increased slightly, because our initial
estimate ignored the institutional overheads.

II CONTEXT, POSITIONING AND OBJECTIVES OF THE DETAILED PROPOSAL / CONTEXTE,
POSITIONNEMENT ET OBJECTIF DE LA PROPOSITION DÉTAILLÉE

II.1 Objectives and challenges

RainbowFS proposes a “Just-Right Consistency”
approach to developing geo-distributed applica-
tions, whereby an application pays only the con-
sistency price that it strictly requires. The tools
contributed by the project will prove that the ap-
plication is safe, while at the same time ensuring
that it is highly available and scalable. Other tools
will contribute to the rapid deployment and to the
monitoring and analysis of system behaviour and
performance. The project applies this approach to
the design of a high performance, highly scalable,
tunable geo-replicated file system.
Current cloud storage offerings are divided between op-
posing, monolithic, one-size-fits-all consistency mod-
els. The RainbowFS partners believe that this thinking
is obsolete. We turn the monolithic, predefined model
on its head, and propose a methodology by which the
system is as weakly consistent as possible, yet suffi-
ciently consistent to be safe. Thus, the application pays
the consistency price it strictly requires, and no more.
We call this approach “Just-Right Consistency.”

Our first challenge towards this vision is to guide the
developer, and help her make correct choices in the
safety-vs.-availability trade-off. Availability is an es-
sential enabler for performance and scalability, since,
to be always available, a replica must avoid synchron-
ising with others [1, 16]. We aim to develop a co-
design methodology that reconciles correct applica-
tion development with high availability. The co-design
approach is enabled by a logic that was previously de-

veloped by the academic partners [12, 31, 54–56]. The
logic enables verifying formally that the application’s
integrity invariants are satisfied by a given (weak) con-
sistency protocol. If not, a tool implementing the logic
will provide a counter-example, which helps the de-
veloper diagnose and fix the problem. Then, to restore
correctness, the developer has two choices: either to
weaken the specification, at the risk of anomalous beha-
viour, or to strengthen the synchronisation, decreasing
availability. Which direction to take is a design de-
cision, but in either case, the tool verifies that the fix
actually restores correctness. In this way, the developer
co-designs the application specification and the associ-
ated consistency protocol. Our approach avoids minim-
ises synchronisation, thus enabling availability, to what
is strictly needed, while proving that the application is
nonetheless correct.

Our second challenge is to translate the resulting spe-
cification into a running, efficient, deployable applica-
tion. We deconstruct consistency models into compos-
able primitives along three dimensions that structure
the consistency design space. Correspondingly, we
will develop a library of components that the applica-
tion developer can combine into a functional applica-
tion skeleton, paying only for what is strictly needed.
These components are bound together by a compos-
ition framework that ensures that the composition is
highly efficient, for instance by consolidating together
any redundant messages or waits. Finally, this task
provides a set of deployment, monitoring, analysis and
debugging tools to aid the programmer achieve the
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Partenaire Prénom Nom Emploi
Implication
sur la
durée du
projet (per-
sonnes.mois)

Rôle et responsabilités dans le projet

Inria Paris
(Regal)

Marc Shapiro Dir. de recherche 18 PI (Coordinateur scientifique)
Replication and consistency at large scale.

Sébastien Monnet Maître de Conf. 9 Replication, consistency and data placement
Mesaac Makpangou Chargé de rech. 9 Modular consistency, protocol synthesis

— TBA Doctorant 36 Modular consistency, application co-design
— TBA Post-doc 36 Modular consistency, project coordination

Scality Vianney Rancurel Director of research 6 Industrial-grade object and file storage
— TBA SW Engineer 36 File system, experiments, integrate with Scality

products
CNRS- Vivien Quéma Professeur 9 Modular consistency, fault-tolerance, coordination of

large-scale Cloud experiments
LIG Renaud Lachaize Maître de Conf. 15 Tools for efficient and correct modular execution,

coordination of large-scale experiments
— TBA Doctorant 36 Efficient component library for modular consistency

Télécom Pierre Sutra Maître de Conf. 18 Large scale replication and file system
SudParis
(TSP)

— TBA Doctorant 36 File system

Table 1: People involved in RainbowFS

Inria Regal Scality CNRS-LIG TSP Total
Task 1 45 8 10 6 69
Task 2 27 8 40 18 93
Task 3 36 26 10 30 102
Total 108 42 60 54 264

Permanent staff 36 42 24 18 120
PhD students, interns 36 0 36 36 108

Post-docs 36 0 0 0 36
Total 108 42 60 54 264

Taux de précarité 14%

Taux de précarité is the ratio of non-permanent personnel, excluding PhD students and interns, to the total.

Table 2: Distribution of manpower per partner: by task, by type
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dual goals of safety and availability.

The third challenge is to apply our approach to a
real, useful and challenging application, and to val-
idate experimentally that our goals have been met.
Given the market demand for structured storage (dis-
cussed later in this document), we target the develop-
ment of an entreprise-grade, highly available, perform-
ant and scalable file system. The file system will be
co-designed and proved correct according to the Just-
Right Consistency approach. It will be implemented
and deployed using the tools of modular consistency.

Because client needs vary, RainbowFS will study the
full rainbow of reasonable storage semantics. At this
level too, users should pay only for what they need.
Applications will be able to count on a Posix-like nam-
ing tree and powerful synchronous commands, such
as rename. An application that manages a flat hier-
archy of unique, write-once files, should enjoy similar
performance to an object store, but remains confid-
ent (thanks to the tools of Task 1) that the application
remains correct under these weaker guarantees. An
application with extreme latency requirements (e.g.,
an interactive game) should be able to request replicas
very close to the end-user; this requires the file system
to hundreds or thousands of partial replicas. The scale
and correctness of this file system will be validated in
a massive-scale geo-distributed experiment.

II.2 Context

Cloud computing and innovation. Cloud comput-
ing is motivated by the potential of economies of scale,
resource consolidation, access to unlimited resources,
and service automation. The cloud market has been
so far captured by a few oligopolies, each running a
small number of vast data centres, essentially based in
the USA. The appeal of the cloud is likely to continue
and to capture an increasing fraction of demand for
computing.

However, current cloud architectures do not satisfy
emerging client requirements for millisecond response,
security and privacy, and integration of private re-
sources into the cloud. Especially in Europe, com-
munities and governments provide local resources, and
5G networks will deploy mini-datacentres at the edge.
Social networks, open data, electronic commerce, sci-
entific experiments, the Internet of Things will con-
tinue to feed an explosion of data sources and needs
for ever-greater amounts of computation and storage.

According to this so-called “Fog Computing” vision,
cloud resources will grow in number and variety. Fu-
ture clouds will collect high numbers of diverse and
geographically distributed data centres. Future cloud

stores will consist of hundreds or even thousands of
geo-distributed sites [17].

The cloud is an area of rapid innovation, calling for
a close cooperation between academic research and
entrepreneurship. It raises deep research questions, for
instance in the area of distributed computing, which
call for concrete solutions that pass the test of reality.
The French innovation ecosystem is well positioned,
with very active and successful SMEs, feeding on a
rich soil of academic research in distributed computing
and related areas.

The RainbowFS proposal grows out from previous col-
laboration between an SME and academia. It aims to
address the difficulty of developing applications that
are both correct and make good use (from both an
economic and performance perspective) of large-scale
distributed resources at Fog-computing scale.

Replication and consistency models. Today, pro-
gramming a distributed application remains something
of a black art. Programming requires to be able to
predict what the machine will be doing, but a distrib-
uted system has many independent moving parts, and
is subject to unpredictable additions and removals of
resources, due to upgrades, failures, or flash load vari-
ations. Furthermore, the requirements themselves are
often ill-defined and change over time. This requires
a fast development path that ensures that the applica-
tion requirements are met, within a changing execution
environment.

For performance and fault-tolerance reasons, inevit-
ably, the same information is duplicated. For instance,
a given data item may have many redundant copies,
e.g., across a RAID, backed-up on tape, cached in
memory, and replicated in multiple data centres Fur-
thermore, different data items are logically related: for
instance, accounting rules require that the balance of
all accounts be a constant, therefore, increasing one
account requires decreasing another.

This raises the issue of consistency. Any update needs
to be validated against integrity rules (such as the con-
stant balance rule above) and propagated to all copies
of the data item and to the related data items. This
is not instantaneous; measured intercontinental round-
trip times are in the order of hundreds of milliseconds
(France-US East Coast: 90–120 ms; France-New Zea-
land 300–600 ms). Therefore, perfect consistency is
not practical, and an application runs above a less-than-
perfect consistency model provided by the system.

A so-called strong model, one that performs updates
in a total sequential order is easy to understand for
developers. However, when network failure occurs
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(which is inevitable), the strongly-consistent model
blocks rather than risk returning a wrong answer, and
everything grinds to a halt. Thus, the strong model
inherently sacrifices availability (and thus performance
and scalability) to maintain a high standard of con-
sistency. The cost and difficulty of strong consistency
increases with latency and number of sites; in a Fog
Computing set-up with thousands of sites, is is just not
possible.

Alternatively the system can remain available, i.e.,
continue to accept updates, at the risk of returning
anomalous results [30]. Such a weaker consistency
model admits more parallelism and enjoys better per-
formance, but exposes the application to anomalies,
which confuse the programmer and may lead to data
loss or violation of integrity.

The performance difference is substantial. In con-
trolled benchmarks, we measured a 13.5× perform-
ance improvement (3× lower latency and 4.5× bet-
ter throughput) between the strongest and the weak-
est model in a small-size cloud [6]. These numbers
mean that synchronisation wastes enormous amounts
of money and energy costs due to synchronisation. Pro-
jecting the above numbers, under weak consistency,
the same workload might cost up to 13.5 times less,
in hardware and energy resources, than under strong
consistency.

On the other hand, because of the need to cope with
anomalies at the application level, the development
cost is much higher.

This inherent trade-off between safety on the one hand,
and availability on the other has sparked the devel-
opment of many competing consistency models, ap-
proaches, and acronyms: SQL, NoSQL, NewSQL, AP,
CP, KVS, object storage, file systems, databases, etc.
Application developers must make a bet in advance of
which model to chose, that will be most appropriate to
their needs. Some systems provide strength parameters
[10, 13, 15, 48, 73, 81], but all lack tools and guidance
to ensure that their application will behave as intended
over the model provided.

Storage systems. The need for data storage is ex-
panding at a high rate. User-generated data, such as
social networks and videos, is already radically push-
ing requirements, to the order of petabytes. This is
dwarfed by the volume to be generated by IoT devices,
or by scientific experiments such as LHC at CERN.
As a result, there is demand for efficient, dependable,
geo-aware and low-cost storage systems.

Increasingly, storage is software defined, i.e., is built as
a logical network of commodity components. Data is

sharded and replicated within data-centres for parallel-
ism fault tolerance, and geo-replicated for availability
and access latency. In fact, a cloud-scale storage sys-
tem such as Amazon S3, Cassandra or HDFS often
forms the bottom layer of internet-scale services.

Data storage systems are currently divided, based on
how they address replication and consistency. Before
even starting to store their internet-scale data and to
develop applications to exploit it, developers are forced
to choose upfront between antagonistic solutions.

Traditional file systems are a hierarchy of folders and
files. Files are updated in place, i.e., an update over-
writes the previous state. File systems are often con-
sidered slow and non-scalable. Indeed, because of its
complex transactional semantics (e.g., rename), ex-
isting systems all require strong consistency to some
degree. File systems are here to stay, because legacy
applications (e.g., databases, custom software, or CAD
software) rely on their structure, and because their
hierarchy provides an intuitive way to organise and to
secure information.

Nonetheless, for reasons of scalability and perform-
ance, a current trend is towards low-level object stor-
age systems, similarly to the NoSQL trend in data-
bases. This approach forgoes the file system tree in
favour of buckets, which are similar to very large, flat
folders. Furthermore, each update of an object creates
a new version. In this way, complex synchronisation is
avoided in the common case. These are widely used
in modern applications (e.g., Web 2.0 and edge net-
works).

II.3 Project outcomes, results, and products

This project advances both the principles and the prac-
tice of distributed computing in general, and of Fog-
scale storage in particular.

RainbowFS will expand and apply the new Just-Right
Consistency approach to the design of distributed
computing and storage systems. This turns the tra-
ditional model-oriented approach on its head. So far,
consistency models have been designed in a generic,
application-independent way. This has been product-
ive in better understanding the design space. However,
no single consistency model is uniformly better than
the other, due to the contradictory imperatives of safety
and availability. Shoehorning an application to con-
form to a model that was predefined in a vacuum, is
not a productive use of developers’ skills. Just-Right
Consistency instead is an approach that co-designs
the application and its consistency protocol, thus en-
abling the developer to semi-automatically identify the
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strict minimum of synchronisation that her application
needs.

To support the Just-Right Consistency approach, the
RainbowFS project will develop tools to precisely
identify the problematic concurrency patterns, to help
with rapid development and deployment, and to mon-
itor, analyse and understand the behaviour of applica-
tions. One such tool is a static analysis engine, based
on the CISE logic [12, 31, 54–56], which proves, with
polynomial complexity, whether a given application
running above a given consistency protocol maintains
a given invariant. If not, other tools will leverage the
counter-examples returned by the CISE tool to pre-
cisely identify the problem and to suggest solutions,
such as a weakening of the application specification,
or a strengthening of synchronisation. The static tools
will be complemented by dynamic ones, for deploy-
ing and controlling the distributed application, while
monitoring its performance and correctness. Another
tool is a library of consistency primitives that can be
combined efficiently, leveraging ongoing research by
the partners that organises the consistency design space
into three logical dimensions.

Using the tools described above, the project will tackle
a real and demanding use-case. We will analyse,
design, prove correct, build, deploy and experiment
with a new distributed file system. The file system
has several important objectives: (i) to support the
extreme data sizes (hundreds of petabytes) required by
modern big-data applications, (ii) to support the thou-
sands of sites, of heterogeneous size and computing
power, foreseen for future Fog-computing networks,
(iii) to converge the file-system and object-storage ap-
proaches, and (iv) to support a Just-Right Consistency
approach for the file system’s users themselves, allow-
ing them to safely parameterise its semantics to min-
imise cost while guaranteeing higher-level correctness.
The industrial partner, Scality SA, plans to integrate
this file system into its commercial offerings within
the timeframe of the project.

Many companies are reluctant to make the move to
object storage, because a many existing applications
rely on the Posix file system interface. Our design
layers the file system above Scality’s object store. As
we discuss later, a file system actually requires syn-
chronisation only in very limited circumstances, and
therefore our design can reconcile the performance of
object storage with the safety requirements of legacy
applications. Our system will offer the full rainbow of
file system semantics, from linearisable to fully asyn-
chronous; applications that require the availability of
object stores can have it, and those that require highly-
structured file system trees with atomic rename can

have it too.

Some systems, such as HDFS, take the approach
of force-fitting the file system into an eventual-
consistency model that breaks the Posix requirements.
The originality of our approach is to start from the
requirements of the application that runs on top of
the file system, and to tailor the consistency models
accordingly; hence the “Rainbow” model.

II.4 Related work and partners’ previous
contributions

The design of efficient and robust large scale distrib-
uted storage systems is a very active R&D field, at the
core of the cloud revolution. As explained earlier,
the market is split between strongly- and weakly-
consistent system designs. We hope to help heal this
split with our Just-Right Consistency and modular con-
sisistency approaches, and to reconcile them in our file
system application.

II.4.1 Strong consistency Strong consistency
provides familiar guarantees and decreases the effort
to make applications correct, but entails frequent syn-
chronisation; each consensus requires two round-trips
[47], i.e., several hundred milliseconds in a wide-area
network. Strong consistency comes at a high hard-
ware cost; for instance, the very strong guarantees of
Google’s Spanner require specific hardware clocks
and high-quality dedicated fibre network links [21].
Recent research has aimed to decrease the cost of
strong consistency, in several ways, such as enforcing
total order writes but weakening guarantees on reads
[14, 73], or increased internal parallelism through
sharding, disjoint-access parallelism, and genuine par-
tial replication [26, 63, 72]. Few practical systems
enforce the strongest consistency; even commercial
centralised databases do not ensure serialisability by
default [9]; the resulting anomalies are considered
acceptable with respect to the improved performance.
However, the Jepsen experiments [41] highlighted
that many production systems suffer from ill-defined
guarantees and/or incorrect implementation thereof.

The partners have contributed efficient strong con-
sistency designs. Sutra and Shapiro [77] designed a
latency-optimal consensus protocol that parallelises
commuting updates. Saeida Ardekani et al. [62] im-
proved snapshot isolation [73] to support genuine par-
tial replication and to improve internal parallelism.
Partners designed a throughput-optimal uniform total
order broadcast protocol for state machine replication
within a cluster of machines [34]. Aublin et al. [8] de-
signed protocols for efficient Byzantine fault-tolerant
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state machine replication, as well as a framework to
compose such protocols, in order to efficiently support
various operating conditions.

II.4.2 Availability and weak consistency To be
available despite network partitions, the system must
accept concurrent updates without remote synchron-
isation. This enables good performance, thanks to
immediate local response, spreading load in parallel
over available resources, and a greater range of imple-
mentation choices.

In return, these systems can promise only weak con-
sistency [92]. Such models exhibit anomalies, which
require extra effort by the application programmer to
ensure safety, increasing the development cost. Ex-
ample commercial systems include Cassandra [83],
Amazon S3 [15], Dynamo [25] or Riak [43].

The partners of this proposal have been strong con-
tributors to research on available storage systems. We
have designed and implemented systems that guarantee
Causal Consistency and highly-available transactions
[9]. Zawirski et al. [93] implemented SwiftCloud, a
highly-available, widely-geo-replicated cloud database
designed for Fog environments. Akkoorath et al. [4]
designed and implemented Antidote, a geo-replicated
cloud database designed for high internal parallelism
and modularity. Previously, Shapiro et al. [68, 69] in-
vented CRDTs, high-level data types that provide con-
vergence and correctness guarantees to applications
above a causally-consistent system. Scality and Inria
together designed and implemented a geo-replicated
file system featuring CRDT semantics [80].

II.4.3 Hybrid consistency Some designs allow the
user to specify a different level of consistency and/or
availability on a case-by-case basis [45, 73, 90]. Com-
mercial examples include Cassandra or Riak. Red-
Blue Consistency classifies each operation as either
blue, commutative with all others and executed asyn-
chronously, or red, non-commuting with and synchron-
ised with other red operations. At a higher level of
abstraction, the Pileus key-value store [81] supports
flexible and dynamically adjustable consistency-based
service level agreements.

However, more consistency options only complicate
the developer’s task, in the absence of tools to guide
the developer and to ensure that the result is correct.
Previous static analysis tools include Bloom [5], which
identifies points of non-commutativity, Homeostasis
[61] which considers conflicts between assignments,
and Sieve [49], which helps automate Red-Blue con-
sistency. All three have limited scope and lack theoret-
ical grounding.

The tools previously contributed by the project part-
ners constitute a breakthrough in this respect. Our first
major result was Explicit Consistency [10], later im-
proved with the CISE logic [31] and the associated tool
[55, 56]. CISE boils down to three correctness condi-
tions: (i) Effector safety verifies that every update in
isolation maintains the invariant, (ii) effector commut-
ativity verifies that concurrent updates commute, and
(iii) precondition stability checks whether the precon-
dition of one update (required by the first rule) is stable
under concurrent updates. The CISE logic supports
general properties expressable in first-order logic and
was shown to be sound. It is able to prove, with poly-
nomial complexity, that a given application maintains
a given invariant above a given consistency protocol.
Conversely, it enables to tailor a consistency protocol,
such that has enough synchronisation to ensure the
application’s safety, but no more.

Task 1 aims to build upon and improve the state of the
art of hybrid consistency; the other two tasks will build
upon this.

II.4.4 Modular consistency The distributed al-
gorithms community has formalised the different con-
sistency models, both for transactional [2] and non-
transactional systems [91]. However, previous work
has classified the models informally along a single
strong-to-weak axis. This linear view is clearly inad-
equate, since, for instance, Snapshot Isolation and Seri-
alisability are incomparable. Similarly, although two
papers claim that causal consistency is “the strongest
possible” model compatible with availability in the
linear classification [7, 50], both Bailis et al. [9] and
ourselves [4, 93] have strengthened causal consistency
with transactional guarantees.

The RainbowFS partners have previously contributed
to improving the conceptual and practical toolkit of
application designers with a modular decomposition
of consistency. Aublin et al. [8] show how to decom-
pose Byzantine fault-tolerant state machine replication
into modular protocols. Similarly, Ardekani et al. [6]
decompose transactional protocols into composable
primitives. In this proposal, we plan to scientifically
deconstruct consistency models along three (mostly-
)orthogonal dimensions: guarantees related to a total
order of writes, those related to the causal order of
reads, and those on the transactional composition of
multiple operations. A model may be stronger than
another on one dimension and weaker on another. We
believe that this new classification scheme is both scien-
tifically sound and has good explicative value. Task 2
will leverage this decomposition.
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II.4.5 File systems File systems have been the sub-
ject of much research and implementation. Relaxing
Posix semantics, AFS [36] introduces caching and
close-to-open semantics. Lustre, GoogleFS and HDFS
[29, 64, 70, 82] improve parallelism by storing data
separately from metadata; however they rely on a cent-
ral metadata server. GoogleFS and HDFS improve
reliability by storing data blocks in a quorum of serv-
ers.

The above systems are designed for a single datacenter.
Systems designed for geo-scale, such as GlusterFS [24]
XtreemFS [37], do not deliver convincing performance.
Google has announced the design of a planet-scale file
system, Collossus [21], but technical information is
lacking.

A recent promising geo-distributed approach is Calv-
inFS [84], layered above a key-value store [27]. Calv-
inFS splits the metadata server into shards; each shard
uses Paxos consensus [46] to synchronise its opera-
tions. A file operation is implemented as a transaction
across one or more logical shards. CalvinFS outper-
forms HDFS in both volume and I/O performance.

Commercial cloud-based file-systems designed for
collaboration, such as Google Drive and Microsoft
OneDrive, are limited to a small number of concurrent
users. Furthermore, they are unsafe: for instance, in
the presence of concurrent rename operations, they
can lose data [57, 80].

The project partners are active in the area of distributed
file systems. Scality is one of the major providers
of high-volume, high-throughput, high-distribution
software-defined storage. Scality and Inria Regal
together have designed and implemented a highly-
available file system, geoFS [65, 80]. Currently, they
are working together on proving its specification cor-
rect and on measuring its performance. Télécom Sud-
Paris have proposed FlexiFS [88], a framework to com-
pare file system design and consistency choices.

In RainbowFS, Task 3 aims at designing an efficient
and correct file system for Fog-scale computing. To
this end, it will apply the co-design approach de-
veloped in Task 1, and will rely on the geo-replication
modules created in Task 2.

II.5 Relation with ANR and European work
programmes

Within the ANR programme’s Challenge 7 “In-
formation and Communication Society” (Société de
l’information et de la communication), this proposal
fits into Axis 7 “Communication, computation and
storage infrastructures” (Infrastructures de communi-
cation, de traitement et de stockage).

As we propose to verify formally that applications cor-
rectly enforce their invariants, this eases the production
of safely operating software; thus, our proposal relates
to Axis 3 “Software science and technology” (Sciences
et technologies logicielles). Finally, RainbowFS is also
linked to Axis 5 “Big Data” (Données, Connaissances,
Données massives), as it designed for the petabyte
scale.

This proposal builds upon the results of previous col-
laborations. ANR project ConcoRDanT, “Consistency
without concurrency control, in Cloud and P2P sys-
tems” (ANR Blanc 2010–2014) was the first to study
the concept of CRDTs (Conflict-free Replicated Data
Types). CRDTs encapsulate replication and concur-
rency resolution, and ensure convergence by construc-
tion [67–69]. CRDTs are a first stab at ensuring the
correctness of applications running above asynchron-
ous replication, and are one of the building blocks of
the RainbowFS proposal. In particular, the RainbowFS
file system will be developed in Task 3 using CRDT
data types.

European FP7 project SyncFree (2013–2016) is ex-
ploring large-scale computation without (or with min-
imal) synchronisation. SyncFree supports a highly-
available cloud database that scales to extreme num-
bers of widely geo-distributed replicas, yet ensures the
safety of applications executing at the edge. Extreme-
scale distributed and consistency protocols, the insight
of strengthening causal consistency, and its formalisa-
tion with the CISE analysis, to be carried out in Task 1,
are outcomes of SyncFree.

Finally, the main ideas underlying the massively-
distributed file system design, to be studied in depth
and implemented in Task 3, are the outcome of pre-
vious joint work (a CIFRE industrial PhD thesis)
between Scality and Inria Regal.

II.6 Feasibility, risks and risk mitigation

This project is ambitious but feasible. In fact, the
partners have already proof-of-concept designs or pro-
totypes for several of the contributions targeted in this
project.

Regarding Task 1, the CISE logic and its proof of
soundness have been published at POPL, the premier
venue in language and verification [31]. A prototype
CISE analysis tool has been developed [55, 56] and
demonstrated on some proof-of-concept examples, in-
cluding a simplified model of the file system [54].
However, it is only a restricted research prototype,
which is too complex and low-level for general use.

Similarly, the partners have experience towards the
studies of Task 2. They have published preliminary
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deconstructions of consensus protocols [8] and of trans-
actional protocols [6]. They have accumulated exper-
ience in tools for deployment and monitoring distrib-
uted systems [59, 60].

The industrial and academic partners are very experi-
enced in cloud-scale storage systems and consistency
[3, 10–12, 28, 35, 40, 62, 77, 89, 93]. The work pro-
posed for Task 3 builds upon a previous collabora-
tion between Scality and one of the academic part-
ners to design a geo-scale, highly-available file system
[65, 80].

We describe some risks specific to the tasks of the pro-
ject in the corresponding sections (see Section III.1).
Furthermore, we identify some overall risks for the
project:

1. Unfavourable timing of the announcement of the
funding decision (planned for July 2016). At this
time of the year, the best PhD students have typic-
ally already committed to a project. To manage this
risk, we request a project duration of 48 months,

which will give us extra hiring flexibility. Within
those 48 months, the workplan takes 36 months,
numbered M 01 to M 36, starting from when the
staff is hired.

2. Failure to develop programs that reconcile avail-
ability and safety. This may be, either because
application semantics turns out to be too difficult to
specify, or because any useful semantics requires
a lot of synchronisation. Given recent advances
in the state of the art, we think this is unlikely
[12, 31, 48, 49, 55, 56, 61]. To manage this risk,
we can always use a stronger consistency model, at
the expense of availability.

3. Given the many difficulties of developing, configur-
ing and deploying a distributed system, we might
fail to scale to the targeted metrics. We mitigate
this risk by using state-of-the-art development and
deployment technology, and by developing further
tools for deployment, monitoring, debugging and
analysis in our Task 2.

III SCIENTIFIC AND TECHNOLOGICAL PROGRAMME, PROJECT ORGANISATION
/ PROGRAMME SCIENTIFIQUE ET TECHNIQUE, ORGANISATION DU PROJET

The aim of RainbowFS is to develop and validate a
novel approach to the design of distributed applica-
tions.

Today, the developer must start by choosing a spe-
cific consistency model, and bet in advance that it will
provide the safety-vs.-availability tradeoff that is right
for her application. Although, as explained earlier,
some platforms support selecting different guarantees
at runtime, they do not help to ensure that the result is
correct. In the application area, a number of distributed
file systems exist, but they are monolithic, and are not
designed for geo-replicated operation at large scale.

In contrast, RainbowFS aims for Just-Right Consist-
ency, adjusting the application semantics and the con-
sistency protocol together. As a result the system is as
available as possible, yet sufficiently consistent to be
safe; the application pays only the price that it strictly
needs. This approach is supported by static and dy-
namic tools that verify that the resulting application
is correct and efficient. It is served by a library and
API that deconstructs classical consistency models into
independent primitives, from which the developer can
combine the minimal set that is necessary. A composi-
tion framework ensures that the combination remains
highly efficient. This comes with deployment, monit-
oring, analysis and debugging tools. The approach will
be used in practice on a demanding and useful applica-

tion: an entreprise-grade file system, tunable according
to the needs of its users, designed to be deployed on
large numbers of geo-distributed sites. It will be valid-
ated in a large-scale experiment, to be deployed across
several continents.

III.1 Decomposition into tasks

Table 3 summarises the tasks, their timing and depend-
encies, and the milestones of the project.

Table 4 lists all the deliverables.

We count the first month of the project, designated
M 01, when the PhD students are hired. The project
terminates 36 months thereafter at M 36. However we
request ANR funding duration of 48 months in order
to have the flexibility to hire the best PhD students (see
Risks, Section II.6).

Recalling Section II.1, the challenges addressed by the
RainbowFS proposal are:

1. Design-time tools and guidance to the developer in
the co-design of the application and its associated
consistency protocol. This challenge is addressed
by Task 1.

2. Transforming an application specification, verified
in the previous task, into an efficient application
skeleton, leveraging composable consistency prim-
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Task 1: Application co-design Task 2: Modular
geo-replication

Task 3: Geo-distributed
massive file system

M01–M12 User-friendly, robust CISE tool.

Domain-Specific Language to
describe operations and
invariants.

Consider extracting information
from source.

Basic consistency component
library.

Decompose to fine-grain
modularity, along three
dimensions.

Deployment, profiling and
monitoring tools.

Single-DC prototype of file
system.

MS1 Basic co-design and tools
M13–M24 Programming patterns.

Generate advice to developer for
fixing conflicts.

Heuristics deriving high-level
information from
counter-example.

Efficient component library.

Composition framework.

Analysis and validation tools.

Initial evaluation of single-DC
prototype.

Geo-distributed file system
prototype.

MS2 Functional prototypes
M25–M36 Synchronisation protocol

generation, taking into account
workload and faults.

Co-design and proof of file
system and other applications.

Apply component library to file
system and other applications.

Large-scale evaluation of library.

Running large-scale experiments,
using our deployment and
monitoring tools.

Large-scale evaluation evaluation
of file system, based on real
workloads.

MS3 Large-scale evaluation

Table 3: Table of tasks

Month Task Title
M12 1 User-friendly co-design tool

2 Consistency components; deployment, profiling & monitoring tools
3 Single-DC file system prototype

M24 1 Synchronisation protocol generator
2 Efficient composition; analysis & validation tools.
3 Geo-distributed massive file system prototype

M36 1 Co-design and proof of complete file system and other applications.
2 Large-scale experimental validation of the component library & tools
3 Large-scale evaluation report

Table 4: Table of deliverables
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itives and tools. This challenge is addressed in
Task 2.

3. Experimental and market validation by applying
this to a challenging, demanding application. This
is the work of Task 3.

The following paragraphs describe each task in detail.

Task 1 : Application co-design

This task is summarised in Table 5.

Objectives of the task: To ensure that an applica-
tion is correct without incurring more synchronisation
than necessary, thus maximising availability, and en-
abling scalability and performance.

Instead of imposing a pre-defined consistency model,
we propose to co-design the application functionality
and its consistency protocol. The basic insight is that,
even within an application, consistency requirements
vary depending on the specific operation [48]. Some
operations can safely run asynchronously in parallel,
while others require synchronisation. A recent break-
through is the CISE static analysis [12, 31, 54–56],
which verifies statically (in polynomial time) whether
a program has sufficient synchronisation.

The challenge of this task is to provide design-time
and run-time tools to guide the developer in the co-
design of the application and its associated consist-
ency protocol. The tools shall verify that the combina-
tion is safe, i.e., updates have the intended semantics
and verify the system’s integrity invariants. When the
tools detect an anomaly, they should provide at least
a counter-example, and better still, suggest ways to
remove the anomaly.

Our co-design approach uses (low latency, available)
asynchronous operations by default, ensuring conver-
gence by using Conflict-Free Replicated Data Types
(CRDTs) [68]. Using a tool that automatically dis-
charges the CISE proof obligations (the “CISE Tool”),
the developer verifies whether the application satisfies
its invariants under these conditions. If not, the tool
returns a counter-example, which serves as a guide to
either weaken the invariants (possibly at the cost of
unfamiliar semantics) or to strengthen the synchronisa-
tion (at the cost of reduced availability). The analysis-
design cycle repeats until verification succeeds. Thus,
the developer co-designs the application and the pro-
tocol, minimising synchronisation to what is strictly
required by its invariants, with the assurance that the
result is correct [10].

For instance, consider the invariant that a file system
forms a tree. The CISE analysis tells us that concur-
rent rename operations may violate the tree invari-
ant. Therefore, the developer must either change the
semantics of rename,1 or ensure that rename opera-
tions are mutually synchronised. With these changes,
the CISE analysis succeeds, thus proving that the file
system maintains the tree invariant. The CISE analysis
also tells us that the other file system operations do not
inherently require synchronisation and that merging
semantics is possibe [80].

Methods and technical decisions
Application co-design. We have applied the above
methodology successfully to some small examples,
including a simplified model of the file system. Ulti-
mately, we wish to achieve the co-design and complete
correctness proof of the widely-replicated file system
of Task 3. We also plan to co-design other applications,
including some that make use of the file system itself.

The specification will model, initially, the Posix file
system API [38]. From the invariant that the file sys-
tem structure must be shaped as a tree, it will derive,
for instance, the sequential precondition to rename,
which forbids to move a directory underneath itself.
Furthermore, the Posix specification disallows many
concurrent updates, e.g., writes to the same file, and
it therefore requires a lot of synchronisation. Using
the co-design approach, we will carefully remove syn-
chronisation on most operations while retaining a se-
mantics reasonably similar to Posix. However, our
preliminary CISE analysis shows that, in some corner
cases, rename conflicts with concurrent rename op-
erations. It follows that, either rename must be syn-
chronised, or anomalies are unavoidable, such as loss
or duplication of whole directories.

User-friendly, robust analysis tool. Our prototype
CISE Tool is sufficiently advanced to prove the concept.
It already checks the CISE Rules to prove the safety of
the application. If not, it reports a counter-example that
the developer can inspect to fix the problem [55, 56].
However, it is only a prototype and remains difficult
to use. For instance, it requires writing a model of
the application in the Z3 internal format. It is up to
the developer to understand the counter-example, to
deduce the issue, and to correct the application.

A short-term improvement will be to develop a trans-
lator from some high-level Domain-Specific Language
(DSL) to Z3. Longer term, we would like the tool
to leverage the application source code itself, either
automatically or semi-automatically.

1 For instance, replacing the atomic rename with a non-atomic copy to the new location, followed by deleting the source location.
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Task 1 Application co-design
Task Leader Marc Shapiro, Inria Regal

Deliverables M12 User-friendly co-design tool
M24 Synchronisation Protocol Generator
M36 Co-design and proof of complete file system and other applications

Participant Inria Paris Scality CNRS-LIG Télécom SP Total
Person×months 45 8 10 6 69

Table 5: Summary of Task 1

An important objective is to automatically analyse the
counter-examples, identifying conflicting pairs of op-
erations.

Finally, we plan to work on extending the CISE lo-
gic. First, we wish to remove the assumption of causal
consistency, and detect cases where causality is not
required, in order to decrease overhead and increase
parallelism. Second, we plan to extend CISE to relaxed
forms of transactions such as Snapshot Isolation [14],
PSI [73] or NMSI [62]. Finally, we wish to address
testing. Tools such as symbolic execution [19] can
systematically generate test cases from the source code
itself, but suffer combinatorial explosion with paral-
lel code. Our intuition is that an approach similar to
CISE can make this quadratic, which would be a major
breakthrough.

Automating protocol generation. The set of conflicting
pairs from the previous step still needs to be translated
into an efficient concrete protocol. An advanced tool
would suggest efficient concurrency control protocols
and/or weakenings of effect or invariant. The developer
is still free to follow the suggestion, or to devise her
own fix.

Operations that conflict must execute one after the
other. For a given set of conflicting pairs, there are
many possible implementations of this order. These
implementations vary in efficiency and liveness. One
extreme is to ensure simple mutual exclusion (e.g., en-
suring each operation in a pair contains a read-modify-
write instruction, or acquires and releases a lock). This
is safe and live, but repeated synchronisation is unlikely
to perform well. At the other extreme, we might allow
only one process to execute conflicting operations (e.g.,
acquiring locks at the beginning of execution and never
releasing them); this is safe, and much more efficient
in terms of concurrency-control traffic; but it’s unlikely
to be live.

The best approach in terms of efficiency is often some-
where in the middle. The choice depends highly on
the workload: for instance, if operations that conflict
are always called by a single process, the “lock before-
hand and never release” approach works well. A lazy

approach, acquiring a lock on first use, and releasing it
only when required by a different process, will prob-
ably give good results in many cases. Furthermore,
there are more efficient alternatives to locking in some
situations, e.g., leveraging causality or using escrow.

We envisage a tool based on heuristics to generate an
efficient protocol, and to compare protocol behaviour
under benchmark workloads or fault injection scen-
arios. The choice shall be guided by energy savings,
latency, throughput, fault tolerance and other perform-
ance considerations, which depend on the workload
and on the environment. The tool’s heuristics should
avoid deadlock, and the tool should verify liveness.

Detailed work programme

Subtask 1.1 User-friendly, robust CISE Tool. We
plan to develop a front-end that parses
the specification in a convenient Domain-
Specific Language syntax (for instance,
Z3lib or TLA+) before discharging the
CISE Rules to the Z3 SMT solver. Later,
we will consider methods for extracting
the information directly from the source
code of the application, either automatic-
ally or with assistance from the developer.

Subtask 1.2 Generation of fixes for CISE violations.
This task will identify standard program-
ming patterns that correct common sub-
classes of CISE violations. It will develop
a heuristic tool that examines the counter-
examples returned by the tool and will
suggest fixes, either by weakening the ap-
plication specification or by strengthen-
ing synchronisation.

Subtask 1.3 Synchronisation protocol generation. A
number of standard concrete synchronisa-
tion protocols to avoid conflicts will be
identified. We will compare their beha-
viours under benchmark workloads and
fault scenarios. We will develop a tool
to propose a suitable concrete protocol,
according to runtime and environment
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characteristics. Thanks to run-time mon-
itoring and a feedback loop, the tool will
be able to learn from experimental data
and propose changes to the protocol when
conditions change.

Success indicators Our current proof-of-concept
CISE tool has been applied to few test cases. In Rain-
bowFS, we aim to make it accessible to ordinary pro-
grammers, to leverage source code directly, to extend
it to run-time testing and verification, and to apply it to
the challenging file-system design described hereafter.

Therefore, we identify the following success indicat-
ors (i) The ability for ordinary programmers to effi-
ciently use CISE tool thanks to a high-level DSL to
co-design their applications and the suitable consist-
ency guarentees. (ii) The characterization of most con-
crete synchronization protocols and their performance
in application-specific workloads and faults scenarios.
(iii) Identifying common patterns of CISE violations
and guidelines on how to fix them.

Deliverables

M 12: User-friendly CISE co-design tool, trans-
lating a model written in a high-level lan-
guage to the solver’s format, discharging the
proof obligations, and returning any counter-
example in a high-level language.

M 24: Semi-automated synchronisation protocol
generation. This tool will consider a limited
set of synchronisation protocols and a number
of well-specified workloads and scenarios.

M 36: Co-design and correctness proof of complete
file-system design and an application using
the file system.

Risks and risk mitigation The work proposed in
Task 1 is ambitious but feasible. Indeed, the CISE logic
and its proof of soundness have been published [31];
a prototype CISE analysis tool has been developed
[55, 56] and demonstrated on some proof-of-concept
examples, including a simplified model of the file sys-
tem [54]. However, it is only a restricted research pro-
totype, which is too complex and low-level for general
use.

We see two main risks for this task. First, identifying
standard programming patterns and heuristics to fix
CISE violations might turn out to be too specific to
applications. In this case, instead of the generation
of fixes of CISE violation, we will provide a suite of
use cases to help developers. Second, the perform-
ance of a concrete synchronisation protcol depends

on workloads characteristics and fault scenarios. Both
workloads and fault scenarios are dynamic. Hence,
it might turn out to be difficult to devise benchmark
workloads that are representative of real situations. In
this case, we will at least provide guidelines for choos-
ing synchronisation protocols, according to workload
and runtime characteristics.

Task 2 : Modular geo-replication This task is sum-
marised in Table 6.

Objectives of the task: To provide the building
blocks allowing developers to quickly implement an ef-
ficient and sound geo-replicated storage system/service
with flexible (just-right) consistency semantics.

The present task aims to help the developer transform
an application specification, proved correct in the pre-
vious task, into a functional application skeleton. A
skeleton comprises the core communication and data
processing infrastructure. In particular, this includes
the code that manages message transmission, reception
and delivery, and enforces consistency invariants. This
also includes the code that reacts to dynamic events
such as faults or changing workloads; such events re-
quire to create or move replicas, in order to guarantee
long-term availability and performance. Note that the
consistency specification must define the behavior of
the system in the presence of faults such as disconnec-
tion or crashes.

This task has two main challenges: (i) To provide
lean and efficient primitive consistency components
that can be combined to implement the application’s
communication and consistency requirements quickly.
(ii) To provide a composition framework that ensures
that the composition is as efficient as a monolithic im-
plementation, in terms of message delays, number of
messages, size of message, synchronisation steps, etc.
To comply with the Just-Right Consistency approach,
which is to “pay only for what you need,” our modular
approach should not impose any synchronisation or
abstraction overhead not strictly required by the spe-
cification, and must use hardware resources efficiently.

In particular, the composed components should not
impose any redundant steps, metadata, or spurious syn-
chronisation. For instance, if two components both
send a message with the same source and destination,
the composition framework should consolidate them
into a single message. In addition to protocol effi-
ciency, the component model should make good use
of the resources modern hardware, such as multicore
CPUs and high-speed network interfaces.
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Task 2 Modular geo-replication
Task Leader Vivien Quéma, CNRS LIG

Deliverables M12 Consistency components; deployment, profiling & monitoring tools
M24 Efficient composition; analysis & validation tools.
M36 Large-scale experimental validation of the component library & tools

Participant Inria Paris Scality CNRS-LIG Télécom SP Total
Person×months 27 8 40 18 93

Table 6: Summary of Task 2

Methods and technical decisions The key aspects
of this tasks’s approach is summarized as follows.

Modular decomposition of consistency and fault man-
agement. We propose to deconstruct consistency mod-
els along three (mostly-)orthogonal axes: (i) total or-
der of operations relative to a single object; (ii) causal
ordering of reads with respect to writes; and (iii) atom-
icity of transactions combining multiple operations. A
consistency protocol can be strong along one axis and
weak along another. Each axis corresponds a specific
class of guaranteed invariants, respectively: constraints
on the value of a single data item; partial order between
events or data items; and equivalence between data
items. Only total-order requires mutual synchronisa-
tion, and thus only the first axis is subject to the CAP
trade-off. In contrast, atomicity and causality can be
implemented with high availability.

Therefore, in order to improve the efficiency of applica-
tion developers (time of development and safety of the
resulting code), we will implement a library of consist-
ency components. More precisely, there will be three
classes of consistency components: one class for each
of the three above-discussed axes, with several variants
in each class (according to the chosen strength for the
corresponding consistency dimension). To the best
of our knowledge, the above-described “3-D” decom-
position is new. We believe that it represents a good
compromise between completeness and intelligibility.

This task will also study how modularity can be applied
to fault-tolerance code. The idea is to design protocol
abstractions enabling reuse, as much as possible, of
the same fault-tolerance building blocks for different
application-level consistency specifications. This is
important because the fault-tolerance code is critical to
both safety and performance, for instance, when oper-
ating in degraded mode or while rebuilding of a replica.
Therefore, the design and implementation of correct
and efficient fault-tolerant code is complex and time
consuming and would strongly benefit from code reuse
and simplified incremental development. To achieve
this goal, we will build on our experience with the
Abstract framework [8], for designing modular state
machine replication protocols.

The design of the framework will be guided by (i) the
opportunities of semi-automatic code/template genera-
tion from the toolchain of Task 1 and (ii) the require-
ments of the tools designed in this task. For these
reasons, we plan to consider a clean-slate approach
for the APIs of the framework, but we nonetheless in-
tend to facilitate the development of many components
by borrowing and adapting code from existing open-
source projects. For example, we intend to borrow
code from the G-DUR framework [6] (developed by
two of the partners) and from CockroachDB [44] (an
open-source clone of Google Spanner [21]).

Tools. This task will design and implement tools to
assess the correctness and the efficiency of a skeleton
built by composing library components. We envision
two kinds of tools: (i) Checking correctness, i.e., that
the application’s safety and liveness; (ii) Check effi-
ciency, i.e., that the implementation does not introduce
unnecessary synchronisation or redundant steps. These
tools will rely on a combination of static and dynamic
approaches, leveraging the uniform design and API of
the components.

We plan to leverage existing model-checking tools
(e.g., CADP [39]) to assess the correctness of our im-
plementations in fault-free cases. Similarly, we will
extend existing stress-test tools, such as Jepsen [42],
to assess our implementations when faults occur. Fi-
nally, we will develop simple tools to monitor the per-
formance of the consistency protocols developed using
our component library, collecting performance metrics
such as message latency and throughput or space and
time overheads.

Detailed work programme

Subtask 2.1 Component library. We will develop a
modular library of consistency compon-
ents and fault-tolerance components, with
an efficient composition framework. The
components offer fine grained modularity
with respect to consistency and fault tol-
erance guarantees. Associated are tools
to assess the soundness of the individual
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components, the library glue code, and
the resulting component assemblies.

Subtask 2.2 Efficient composition framework. This
subtask will support the component lib-
rary, both at the design level (i.e., the
assembly of micro-protocols for consist-
ency and fault-tolerance), and at the im-
plementation level. For each component
composition, our goal here it to reach the
performance and resource footprint of a
monolithic implementation. This will be
supported by developing monitoring and
profiling tools that spot performance bot-
tlenecks.

Subtask 2.3 Evaluation. We will assess the benefits
of Just-Right Consistency compared to
existing monolithic approaches. This as-
sessment feeds back iteratively into the
design. Each iteration consists of an
experimental campaign followed by the
design and implementation of new optim-
izations. This feedback loop will make
use of three kinds of workloads: (i) syn-
thetic micro-benchmarks; (ii) existing ap-
plications (adapted from existing code);
(iii) the file-system use case from Task 3.

Success indicators We see the following success cri-
teria for this task: (i) The ability to reimplement
existing geo-storage application designs (from the lit-
terature) with low effort. (ii) For a given application
design, the ability to achieve at least comparable per-
formance with respect to a monolithic implementation.
(iii) The ability to demonstrate that an implementation
derived from the Just-Right-Consistency approach can
yield tangible performance gains.

Deliverables

M 12: Library of consistency components; deploy-
ment, profiling and monitoring tools.

M 24: Efficient composition framework of consist-
ency components; analysis and validation
tools.

M 36: Large-scale experimental validation of the
component library and tools.

Risks and risk mitigation The partners have pre-
liminary experience towards this task. They have pub-
lished preliminary deconstructions of consensus proto-
cols [8] and of transactional protocols [6]. They have

accumulated experience in tools for deployment and
monitoring distributed systems [59, 60].

We see two main risks for this task. First, the degree of
modularity that we envision for the components may
turn out to introduce excessive complexity and/or a
substantial performance overhead. In this case, we will
restrict the modularity of the framework and consider
only the consistency configurations that most useful for
the file system use case studied in Task 3. Second, the
monitoring and analysis that we envision may prove to
be challenging to design and implement (e.g., due to
heavy resource requirements). In this case, we might
fall back on testing in a controlled environment.

Task 3 : Geo-replicated massive file system This
task is summarised in Table 7.

Objectives of the task: To design an entreprise-
grade geo-replicated file system with consistency guar-
antees, and to demonstrate it at massive scale.

The data storage market shows a growing demand for
file and object based storage. This demand comes from
the legacy use of file systems as one-size-fits-all stor-
age solutions, together with a growing appetite for big
data infrastructures (e.g., HDFS in Hadoop). Analyst
firm IDC predicts the global file and object storage
market will continue to gain momentum and reach $38
billion by 2017 [58]. Scality regularly gets requests
for file systems up to hundred of petabytes.

Jointly to this demand for raw performance, compag-
nies are getting more and more de-centralised, oper-
ating at the geographical scale. However, as pointed
out in II.4.5, existing file systems designs are not yet
ready for Fog computing and geo-distribution. They
either do not deliver convincing performance at that
scale, or they still rely on a central metadata server.
To bridge this technological gap and target a prom-
ising market, our flagship application in RainbowFS
is a geo-replicated massive file system.2 To build this
file system in Task 3, we will address the following
challenges:

• Elastic Geo-distribution. We provide a Fog-
computing experience to the end-user. In par-
ticular, we target large-scale infrastructures that
consist of dozens of large data centres (DCs) and
possibly hundreds of smaller point-of-presence
centres, scattered around the globe. This scale of
infrastructure is required by today’s digital busi-
nesses, which need distributed, always-on ser-
vice; applications with extreme latency require-
ments will leverage replicas located very close to

2 We also plan to apply it to several other real-world applications, for instance big-data analytics and indexing, outside of RainbowFS
funding.
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Task 3 Geo-replicated massive file system
Task Leader Vianney Rancurel, Scality

Deliverables M12 Single DC File System Prototype
M24 Geo-distributed Massive File System Prototype
M36 Large-scale Evaluation Report

Participant Inria Paris Scality CNRS-LIG Télécom SP Total
Person×months 36 26 10 30 102

Table 7: Summary of Task 3

their end users. The system shall support elastic
scalability, dynamically and seamlessly adding
and removing servers, or even whole DCs.

• Massive Performance. To achieve massive
performance, we plan to leverage the fully-
decentralized nature of the large-scale underly-
ing infrastructure. Our file system will aggreg-
ate network bandwidth where possible, and will
support massively parallel distributed operations.
To ensure scalable geo-distribution, it will sup-
port partial replication.

• Consistency, Security & Fault-tolerance. Our
file system must be dependable, ensuring consist-
ency (as described under Task 1) and tolerating
failures such as machine crashes, disconnection,
or whole-DC failure. It shall be secure thanks
to state-of-the-art cryptography techniques, and
ensure integrity using erasure codes. An ap-
plication should be able to have its own data
placement policy, e.g., placing replicas in dis-
tinct locations to cope with the possibility of a
DC being compromised, or ensuring that all its
replicas remain within a given jurisdiction.

Methods and technical decisions Our technical de-
cisions build upon our rich experience in designing
and evaluating distributed data storage systems.

Synchronisation-free Operations Where Possible. We
ensure our file system is both scalable and correct us-
ing the co-design approach developed in Task 1. The
system maintains the invariant that both the director-
ies and the internal (inode and block) data structures
form a tree. We know from Task 1 that there is no
need for strong synchronisation to implement the add
and remove operations. However, the Posix standard
contains additional operations that make it difficult to
scale geographically and/or to high numbers of users
and high update rates. We plan to make as many oper-
ations as possible synchronisation-free, without viol-
ating user-defined expectations, and to boost perform-
ance using techniques such as caching or close-to-open
semantics [36]. For instance the referential-integrity in-
variant (every node is referenced from some directory)

does not require synchronisation, only causal delivery
of create and delete operations.

This methodology builds upon the CISE analysis and
upon our previous geoFS design, a proof-of-concept
geo-replicated file system [80]. In geoFS, all opera-
tions are asynchronous ( concurrent rename suffers
only a minor anomaly, i.e., duplication of a sub-tree,
and concurrent updates to a file result in two renamed
files).

Tailorable Data Consistency. Historically, file sys-
tems focused on the strong Posix model. More re-
cent designs have shifted to ensuring availability un-
der weaker consistency, because of the need for geo-
distributed, planetary-scale and always-available ser-
vices. However, existing file systems offer the same
consistency level for all end-users and applications,
and are often incorrect. RainbowFS departs from this
monolithic vision of the file system, and explores fine-
grained consistency, parameterised according to usage,
while still ensuring correctness. Users may choose
their semantics at the granularity of a sub-tree or even
of a single file, thus supporting the rainbow of all
reasonable consistency/available trade-offs. For in-
stance, by user option, concurrent writes to a same
file can either be disallowed as in NTFS, arbitrated
by last-writer-wins as in NFS, or be merged simil-
arly to SVN or git, if the file content is a CRDT, or
cause the creation of two files side-by-side as in Mi-
crosoft OneDrive or geoFS. For rename, the user will
have a choice of either occasional unavailability as in
strongly-consistent systems, or occasional anomalies
as in geoFS. Even if an application running above the
tailorable file system chooses the more liberal options
for availability and performance, it will remain safe,
because it can itself be verified thanks to the tools from
Task 1.

All the above options can be supported above a single,
asynchronous codebase. To disallow a specific anom-
aly requires only some extra synchronisation, which
can be added on top. In the limit, if all operations
are made synchronous, the system exhibits the strong
Posix semantics.
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Object Store Everywhere. We build our file system atop
an object store, currently being developed by Scality,
code-named IrM hereafter. This object store is elastic,
dependable and geo-distributed. It also supports data
placement policies. RainbowFS implements all high-
level file system calls as transactions of IrM-level oper-
ations. We cleanly separate data objects (file content)
from metadata objects (inodes). The data store is op-
timised for write-once objects, and the metadata store
for highly-mutable objects. Metadata forms a virtu-
alisation layer above the object store to avoid update-
in-place. This approach converges the file- and the
object-based storage designs, which we believe is a
worthwhile research topic on its own merit.

Fully-distributed Architecture. Current industrial-
grade file systems [29, 70, 75] are built around a central
metadata server. As the metadata server is a serial-
isation bottleneck, this design does not scale beyond
the petabyte [71]. To support future sizes and geo-
distributed Fog computing, our approach instead dis-
tributes metadata management across geo-distributed
DCs. To support synchronisation when necessary in-
side the file system, the object store will support prim-
itives such as read-modify-write (rmw) or compare-
and-swap (cas). For instance, in the Posix semantics,
creating a file is an atomic transaction that first creates
an inode block, then adds the file to the parent direct-
ory with rmw. Only the latter operation needs strong
consistency to ensures that two clients don’t create the
“same” file concurrently. Synchronisation and commu-
nication use the library of components developed in
Task 2.

Experimental validation. As a reality check, we
are planning a massive experimental deployment and
benchmarking of the file system. It must be of suffi-
cient scale to be credible and to be competitive with
scientific publications in the best conferences, cur-
rently dominated by the American cloud giants such
as Google and Amazon.

Our performance target aims for 105 servers over sev-
eral DCs, supporting petabytes of data, and an update
bandwidth exceeding 10 GB/s. However, a petabyte-
scale experiment would be prohibitively expensive
and would make sense only with real client data. To
remain feasible within the budget of an ANR pro-
posal, we aim for a terabyte-scale experiment, with
103 physical nodes and 10 servers per node, across five
geographically-distributed DCs. The experiment plan
is developed in more detail in Table 8 and Section III.3.

The experiment will initially use the French na-
tional Grid’5000 national experimentation facility [33],
which can be accessed for free. Once the system has
been thoroughly debugged on Grid’5000, and to ex-

pand beyond the Grid’5000 capacity, we will add re-
sources rented from a commercial cloud provider. We
expect to be able to execute essentially the same code
on both platforms. Although only terabyte-scale, this
setup should still enable us to draw meaningful conclu-
sions on the way to the petabyte.

Detailed work programme

Subtask 3.1 File System. We design and implement
a distributed file system with support for
file replication, data redundancy and en-
cryption, multi-scale fault-tolerance, and
a rainbow of consistency levels. It is
layered above the IrM object store. In-
titially, it will support a single DC and a
single level of consistency; later it will be
extended to available geo-replication and
tailorable consistency.

Subtask 3.2 Evaluation. This subtask is devoted to the
extensive evaluation of our file system de-
scribed above.

Success indicators We evaluate the success of
Task 3 in terms of functionality and performance. This
means that (i) We deliver a fully functional file sys-
tem interface that can run industrial-grade benchmarks
(e.g., IOzone, SPECsfs or FileBench [20, 52, 74])
as well as synthetic traces [86, 87]; (ii) the degree
of consistency required by the user is satisfied at all
time by the file system, from fully asynchronous as in
geoFS, to fully-synchronous Posix semantics, while
remaining correct; and (iii) the evaluation assesses
that we reach the competitive performance in terms
of throughput, latency, fault-tolerance, parallelism and
geo-distribution.

Deliverables

M 12: Initial version of the prototype with base object
and file operations at the level of a single DC.
We use separate instances of the IrM object store
to store data and metadata objects. The CISE
tool verifies safety of the file system specifica-
tion.

M 24: A more evolved prototype including the full
support of file system operations in a single DC,
and base operations across them. The under-
lying geo-distributed data block storage should
support erasure coding, data locality as well as
put/get/rmw operations.

M 36: Full geo-distributed evaluation of the Rain-
bowFS prototype. This evaluation leverages re-
sources taken from both Grid’5000 and commer-
cial clouds.
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Risks and risk mitigation While clustered file sys-
tems, such as NFS, Lustre or HDFS are widely de-
ployed, peer-to-peer file systems [23, 53] never gained
momentum. As a consequence, it is possible that in the
rainbow of colors, very weakly consistent file systems
seem risky to the end-user. To mitigate this problem,
our insight is to avoid lost updates under weak con-
sistency with the help of CRDT-like file operations.
Another possible risk is related to the large-scale evalu-
ation of our file system. Synthetic benchmarks should
be as close as possible to realistic scenario. However,
when a massive number of users concurrently use a
file system, the number of reasonable scenarios to eval-
uate is too large. To avoid this problem, we plan to
leverage public traces of personal cloud storages, e.g.,
Ubuntu One [32], as well as tools employed in the
HPC community [66] to model I/O-intensive distrib-
uted applications.

III.2 Project organisation

The consortium and partners will be described in Sec-
tion III.4.

The Project Leader is Marc Shapiro of Inria Regal. He
will receive support for technical coordination from
the post-doc, acting as coordinator.

The Management Board has the responsibility of gen-
eral circulation of information, and technical and non-
technical decisions that require coordination between
the partners. This board includes the project leader,
the coordinator, one representative per partner, and one
representative per task. The same person can attend
in multiple capacities. The board meets physically, by
telephone or similar means, at least once a month.

Each partner names its representative in the Manage-
ment Board at the start of the project. At the time of
submitting the proposal, these are identified as Marc
Shapiro of Inria, Vianney Rancurel of Scality, Vivien
Quéma of CNRS-LIG, and Pierre Sutra of TSP.

The technical work described will be carried out by the
different partners, organised in Tasks, under the lead-
ership of a Task Leader, as described in Section III.1.
A Task Leader may take the decisions required in the
task. He shall inform in advance other tasks of any
issues that impact them, and will take their input and
requirements into account.

The project will use modern development tools, such as
github, which support a distributed design and develop-
ment team. Nonetheless, real communication requires
physical meetings. There will be general meeting of all
the project participants, at least once every six months.
Smaller working groups will meet as required, either

physically or electronically. Any of these meetings
may invite outside expertise as required, as long as all
the partners agree.

In case the Project Leader or one of the members of
the Management Board does not wish to, or cannot
fulfill his/her duties, the corresponding partner shall re-
place him or her, with the agreement of the remaining
members of the Management Board. A Task Leader
can be replaced, in similar circumstances, by a joint
decision of the partners working on the task and of the
Management Board.

In case of a conflict between partners, the Project
Leader will endeavour to resolve the problem by con-
sensus. For this task, he/she may consult outside ex-
perts. If consensus cannot be found, a special manage-
ment board is called to vote on the issue; each partner
institution has one vote; in addition the project leader
has one vote and can resolve a tie.

III.3 Scientific explanation of funding re-
quest

The budget plan and funding request will be found in
the administrative submission document. More detail
follows.

We request funding for three PhD students, one post-
doctoral researcher, and one junior engineer, all full
time. The students are involved in all the tasks, but one
is more specifically responsible of the co-design task,
one of the modular consistency task, and one of the file
system task. Although the post-doc is assigned to the
Inria budget, he or she will be serving the whole pro-
ject. He or she will focus on the modular consistency
challenge, and will also coordinate the research across
the different areas of the project. The engineer will
work on connecting the file system with the underlying
local storage and replication substrate, contribute to the
massive file system experiment, and help integrate the
project’s results into Scality’s products. The partners
will also bring in other students and engineers, funded
from other sources, who will help with the project.

Publication on experimental research in distributed sys-
tems is currently dominated by large American cloud
operators. European academia generally does not have
the means to compete. To regain the research lead, our
workplan includes an ambitious massive-scale experi-
ment. It will leverage both Grid’5000 and commercial
cloud resources, which would be impossible without
the requested ANR funding.

Its target is to experiment with 1 100 nodes, 10 servers
per node, across five geographically-distributed data
centres (DCs). Preparation and ramp-up will be done
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Total hours (Total period): 720

For setup: 72

For experiments: 648

Replication Factor in AW 2

Total DCs in AWS: 3

Node Costs
Node Type Amount/DC Amount total Type Avg cost/h/node Avg cost/period/node Total cost/period

File and object shard server 270 810 c3.large 0.105 75.6 61236

Monitoring 3 9 c3.large 0.105 75.6 680.4

Analysis 1 3 c3.xlarge 0.21 151.2 453.6

Load generators 26 78 c3.xlarge 0.21 151.2 11793.6

Sum Nodes 300 900 0.63 453.6 74163.6

Network Costs
Traffic Type GB/h/node/replica GB/h/node GB/h per DC GB/h total Cost/GB Cost/period/DC Total cost/period

Inter DC Traffic Outbound 5 5 1350 4050 0.02 17496 52488

Inter DC Traffic Inbound 5 5 1350 4050 0 0 0

Sum Traffic 10 10 2700 8100 17496 52488

Storage Costs
Storage Type GB per DC GB total Cost/month/GB Cost/Period/DC Total cost/period

Image/data storage 2000 6000 0.05 100 300

179439.6

exchange rate: 0.887592 159269.2

(Each data item will be replicated in 3 DCs: 2 AWS + 1 Grid5000)

(Plus two DCs in Grid5000)

Total Sum (USD)
Total Sum (€) - Approximation

Table 8: Budget of large-scale experiment

on the Grid’5000 national facility [33]. Optimistically
we hope to be able to run two DCs on Grid’5000; this
is already stretching the upper limit of what Grid’5000
can provide. To scale beyond, we must rent resources
from a commercial cloud provider.

Our experiment plan and budget is detailed in Table 8.
For cost and feasibility reasons we aim for a terabyte-
scale experiment; a petabyte-scale experiment would
be prohibitively expensive and would make sense only
with real client data. We expect an experiment duration
of 720 hours, spread over two or three months. We
save on setup time by previously debugging the de-
ployment in Grid’5000. We will provision two DCs in
Grid’5000, and rent virtual machines in three DCs of a
commercial cloud provider. The replication factor is
three, i.e., on average there will be one replica of every
data item in Grid’5000 and two in the commercial
cloud.

Each Grid’5000 DC will consist of 100 file server
nodes, and 10 nodes for load generation and monit-
oring; this is an optimistic estimate, on the hope that
Grid’5000 will grow, because today it is extremely dif-
ficult to reserve even 100 nodes at a time in Grid’5000.
Each DC in the commercial cloud will consist of 300
medium-size nodes, of which 270 for file system serv-
ers, and 30 for load generation and monitoring. Further-
more, we estimate 5 GB/hour/node/replica of inter-DC
traffic in each direction, and 2 TB of image and data
storage per DC. To estimate the costs, Table 8 uses

the current AWS list prices as our data point; the total
comes to 160 ke. The commercial cloud provider will
be selected on price and functionality; all other things
being equal, a European provider such as OVH will
be preferred. This amount is budgeted to CNRS LIG,
who will be co-ordinating the experiment.

Inria Paris (Regal) requests funding for a postdoc
and a PhD student. The postdoc will focus his or her
research on Tasks 1 and 2, and will help with the co-
design of the file system application. He or she will
also assist the Project Leader in the coordination of
technical and administrative tasks. The research of the
PhD student will focus on modular consistency and
application co-design. The senior researcher’s research
workplan is as follows. Dr. Shapiro leads the project
and focuses on Task 1. Prof. Monnet focuses on Task 2.
Dr. Makpangou focuses on Task 3.

As project coordinator, with a high manpower invest-
ment, Regal requests 45 ke to attend project meetings
and scientific conferences, and 10 ke for computing
equipment.

CNRS LIG The cost of the large-scale Cloud-based
experiments, detailed above, is budgeted to CNRS LIG,
who co-ordinates the experiments. CNRS LIG also re-
quests funding for a PhD student who will mostly work
on Task 2. The student will be in charge of designing
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the component library and its associated monitoring
tools. He will also contribute to Task 3.

In addition, CNRS LIG requests 20 ke for travel (to
attend project meetings and scientific conferences) and
5 ke to acquire laptops for the design and development
work. The slightly higher travel budget (compared to
other partners with similar manpower) is explained by
the fact that CNRS LIG is the only partner located
outside the Paris area (where most project meetings
will be held).

Télécom SudParis (TSP) will work mostly on the
development and evaluation of the geo-distributed
massive file system. To help in the coding of the file
system and the large-scale evaluation, TSP requests
the funding of a PhD student. Besides that, the fund-
ing demand of TSP also includes 15 ke for travel to
project meetings and scientific conferences, as well as
5 ke to be spent in small equipment.

Scality In order to participate to the scientific re-
search and to prototype the scientific results of Rain-
bowFS into their product line, Scality will take the
opportunity of this project to hire a permanent-staff
(CDI) research engineer. The engineer will participate
in the design and development of the geo-distributed
file system (Task 3) above Scality’s object storage sys-
tem. He or she will also help to develop and put to use
the modular consistency, deployment, monitoring and
analysis components studied in Task 2. (Regarding the
co-design tools studied in Task 1, Scality acts mostly as
users.) This is important, because practical implement-
ation research serves to validate the scientific model,
and can provide unanticipated insights. This is also
beneficial for the usefulness of the project since it will
be integrated into Scality’s product.

III.4 Project partners

III.4.1 Consortium as a whole The partners to-
gether have the expertise and the critical mass neces-
sary for this project. They already have a history of
collaboration, including design and development of a
highly-available file system [65, 80] and of advanced
consistency protocols [6, 62, 76–78].

Scality is world leader in massive distributed storage
on commodity system architectures. Inria Regal brings
expertise in large-scale replication, different consist-
ency models, and CRDTs. CNRS LIG are recognised
experts in fault-tolerance in distributed systems us-
ing replication protocols (both within a datacenter and
across datacenters). Télécom SudParis are experts in

consistency protocols and distributed storage systems;
they contributed to the design and implementation of
Infinispan [51], the flagship distributed key-value store
developped by RedHat.

III.4.2 Principal Investigator The Principal In-
vestigator is Marc Shapiro, a Senior Researcher (Dir-
ecteur de recherche) at Inria and LIP6. He is a leading
European expert in distributed computing. He led the
SOS group (Systèmes d’objets répartis) at Inria for 13
years, then the Cambridge Distributed Systems Group
at Microsoft Research Cambridge for 6.5 years.

He has participated in numerous cooperative projects,
with both academic and industrial partners. He was the
leader of the recent ANR project ConcoRDanT. He is
currently (until Sept. 2016) the Principal Investigator
for the SyncFree FP7 project on ultra-scalable tech-
niques for sharing mutable data in wide-area end-user
application scenarios. The outcome of both projects
will be used in RainbowFS.

He authored 89 international publications, 35 invited
talks, 18 recognised software systems, and five pat-
ents. Recent relevant publications include POPL 2016
[31], EuroSys 2015 [10], PaPoC 2015 [22, 85], Systor
2015 [80], SRDS 2015 [11], Middleware 2014 and
2015 [6, 93], SIGACT News 2014 [40], OPODIS 2014
[3], SRDS 2013 [62], and SSS 2011 [68], all available
online.

III.4.3 Inria Paris (Projet Regal) Dr. Makpangou,
Prof. Monnet and Dr. Shapiro are members of Regal,
a joint research group of Inria Paris with CNRS and
Université Pierre et Marie Curie (Paris 6) through the
Laboratoire d’Informatique de Paris 6, LIP6 (UMR
7606).

The research of the Regal team addresses the theory
and practice of Computer Systems, including multicore
computers, clusters, networks, peer-to-peer systems,
cloud computing systems, and other communicating
entities such as swarms of robots. It addresses the chal-
lenges of communicating, sharing information, and
computing correctly in such large-scale, highly dy-
namic computer systems. This includes addressing
the core problems of communication, consensus and
fault detection, scalability, replication and consistency
of shared data, information sharing in collaborative
groups, dynamic content distribution, and multi- and
many-core concurrent algorithms.

Regal has developed a number of systems, such as
SwiftCloud [93], G-DUR [6], NMSI [62], CRDTs
[68, 69], and the CISE Tool [31, 56] that are relev-
ant to this proposal.
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III.4.4 CNRS Laboratoire d’Informatique de
Grenoble (LIG) The Erods team at LIG is working
in the domains of operating systems and distributed
systems from both a practical and theoretical perspect-
ive. Recent works of the team include efficient proto-
cols for the design of fault-tolerant distributed systems
(e.g. state-machine replication protocols), optimiza-
tion techniques for systems executed on NUMA mul-
ticore machines (e.g. thread and memory placement
algorithms), as well as profiling and monitoring tools
for both centralized and distributed systems (e.g. the
MemProf memory profiler).

Vivien Quéma will be the technical leader for the
CNRS-LIG partner. He is Professor of Computer Sci-
ence at Grenoble INP. He has been a visiting researcher
at the University of Rome 1 “La Sapienza,” at EPFL, at
UT Austin, and at LIP6 (Paris 6). He has been working
for ten years on the design and optimization of com-
plex systems of various scales, including multicore
operating systems, replicated servers and large-scale
peer-to-peer systems. He has co-authored research pa-
pers in venues such as ACM TOCS, OSDI, ASPLOS,
EuroSys, USENIX ATC, DSN, Middleware, ICDCS
and SRDS. He received a best paper award at EuroSys
2010 for his work on modular fault-tolerant replication
protocols and a best paper award at USENIX 2015
for his work on performance optimization of NUMA
multicore systems.

III.4.5 Télécom SudParis The ACMES team of
Télécom SudParis focuses on the design of algorithms,
components and services for distributed systems, from
small to large scale. The team is part of the SAMO-
VAR Laboratory (UMR 5157). Recent advances in the
team include a multiscale framework for the IoT, con-
currency control algorithms for multicore architectures,

as well as a middleware of distributed objects.

Pierre Sutra (assistant professor) will be in charge of
the Télécom SudParis partner. Recently, Pierre was a
junior researcher at the University of Neuchâtel, and
a post-doc at INRIA. Pierre received his PhD from
UPMC in 2010. He is interested in both the theory and
practice of distributed systems, with an emphasis on
data consistency and concurrency. His recent publica-
tions on the topic of data storage systems and concur-
rency control include DISC 2015 [18], CLOUD 2015
[59], Middleware 2014 [93], SRDS 2014 [28, 35] and
OPODIS 2014 [79].

III.4.6 Scality S.A. Founded in 2009, Scality is a
French company with headquarters in San Francisco
and subsidiaries in Japan and France. Most of the
R&D and engineering is done in France, where Scality
employs 102 people. Scality is an industry leader in
software-defined storage at petabyte scale. Scality’s
customers include four of the top ten cable operators
in the US, the second largest telco in France, leading
operators in Japan, leading television network in Ger-
many, and the second largest online video site in the
world.

Scality deploys software-based storage solutions that
deliver billions of files to more than two hundred mil-
lion users daily, with 100% availability. At petabyte
scale, hardware-based scale-up approaches are very
expensive and also very hard to scale and operate.
Scality’s answer is a 100% software-based, scale-out
approach, using a cluster of commodity servers ab-
stracted by a logical layer that handles data access,
data durability, data availability and data movement. It
supports a Posix-compliant distributed filesystem with
high-level APIs (FUSE, NFS, CIFS and CDMI), on
top of a Distributed Hash Table (DHT).

IV IMPACT OF PROJECT, STRATEGY FOR TAKE-UP, PROTECTION AND EXPLOITATION OF
RESULTS / IMPACT DU PROJET, STRATÉGIE DE VALORISATION, DE PROTECTION ET

D’EXPLOITATION DES RÉSULTATS

IV.1 Impact

The project will have scientific, practical and economic
impact. Let’s consider them in reverse order.

IV.1.1 Economic Impact In a cloud-scale system,
the choice of the consistency model is a difficult and
vexing choice. Strongly-consistent storage shields the
developer from the complexities of parallelism and dis-
tribution, but comes at a stiff price. A highly available

system can be faster and cheaper, but early adopters
learned the hard way that the anomalies of weak con-
sistency are error-prone. Pragmatically, in real-world
distributed systems, weak and strong consistency co-
exist, but this combination is hard to understand.

Our approach enables the developer to identify the
weakest, most available and most efficient synchronisa-
tion pattern that supports her application. This gives an
economic advantage, because weak consistency con-
sumes considerably less resources and responds more
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quickly than strong consistency, and because the de-
veloper will spend less time debugging than with a
manual approach. This opens the market of cloud-
scale applications to newcomers, enabling European
SMEs to compete with the American giants.

Scality SA will be the first to benefit. They expect
that the file system designed in this project to bring in
sizeable revenue, thanks to its performance, scalability
and novel features. It will also help Scality’s customers
to transition smoothly from files to object storage.

IV.1.2 Practical Impact Our approach builds upon
a recent breakthrough, the CISE logic, which makes
it possible to prove, with only polynomial complexity,
that a given application specification satisfies given
integrity invariants above a given consistency model.
Furthermore, if the analysis shows the application to be
incorrect, it returns a counter-example, which guides
the developer towards a fix. She can either weaken the
application specification or strengthen the consistency.

This is a complete change from current practices to dis-
tributed software development. Classical approaches
proceed from a predefined consistency model, and
leave it to the developer to reason about application
correctness. In contrast, our approach ensures that a
specific application, running on a specific consistency
semantics, is safe with respect to specific properties
relevant to the application. This lets the developer fo-
cus on her problem, and gives greater confidence that
the application is correct.

Debugging a distributed application is extremely com-
plex, because of the combinatorics of parallel execu-
tion, non-deterministic scheduling and messaging, and
failures. The current practice is mostly based on trial
and error. Using the CISE logic, we are hopeful to be
able to generate systematic test cases for distributed
systems with only quadratic complexity.

IV.1.3 Scientific Impact A successful RainbowFS
project will help disseminate knowledge about the
CISE logic, a very recent breakthrough. Furthermore,
our research aims to improve the existing tool and lo-
gic in several directions, making them more widely
applicable. These directions include adding a causality
analysis, supporting common snapshot-based forms of
transactions, and applying the logic, not only to static
analysis, but also to testing and debugging.

Currently, experimental research in distributed sys-
tems is dominated by large American cloud operators.
European academia generally does not have the means
to compete. To regain the research lead, our workplan
includes an ambitious massive experiment, leveraging

Grid’5000 and massive commercial cloud resources,
which would be impossible without the requested ANR
funding.

IV.2 How the project addresses the chal-
lenges

This section refers back to the challenges listed in
Section II.5. Our agenda addresses scientific and tech-
nical issues related to some of the hurdles identified
for Axis 7, namely: (i) issues regarding scaling up in
various dimensions, (ii) a far-reaching change to the
architecture and operation of infrastructures, (iii) reli-
ability and fault resilience. RainbowFS is completely
in line with the challenges put forth by ANR in Re-
search Axis 7: “aim to avoid isolated infrastructures
geared to just one type of application”, “using an agile
approach to comply with future, often unanticipated,
developments”, “infrastructures must be capable of
achieving high levels of performance and efficiency,
while being open and agile so that they can be adjus-
ted to meet the diverse, dynamic requirements of the
various application categories.”

By adapting consistency protocols to application needs,
we provide the ability to offer efficient data access to a
wide variety of applications, on a large scale. Enabling
safe access to weak consistency has the potential to
reduce substantially both the monetary and the energy
cost for large-scale distributed applications.

Beyond the concerns of the ANR Strategic Programme
discussed in Section II.5, the RainbowFS proposals
addresses major concerns of the scientific community
and industry.

IV.3 Scientific communication and uptake

The members of the project plan to use the tools and
the library components (developed in Tasks 1 and 2
of the project) as a teaching vehicle for lectures and
hands-on sessions in distributed systems and distrib-
uted algorithms (all the academic participants in the
project are already strongly involved in the teaching
staff of graduate-level classes related to distributed
systems and algorithms in several French universit-
ies). The teaching material (source code, companion
documents, problem sets and answers) will be made
freely available to the teaching community at large via
a dedicated website.

The project leader, Marc Shapiro, is a member of
ACM’s Distinguished Speaker Program and will lever-
age this opportunity to present the results of the project
to various (academic and industrial) audiences world-
wide.
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IV.4 Intellectual property and exploitation
of results

All the partners, both academic and industrial, plan
to make the software and other artefacts developed in
this project available as open source. We plan to pub-
lish scientific results in major conferences and journals
related to operating systems, distributed and parallel
systems, storage systems, and related areas.

In addition to the usual scientific papers, we also plan
to promote the results and the software produced by
the projects through additional channels: (i) We will
propose a tutorial session to a major international con-
ference and/or a thematic school; (ii) We will post
tutorial videos on YouTube or similar websites, simil-
arly to the CISE demo already on YouTube [55].

IV.5 Industrial exploitation

The project follows on an existing scientific collabora-
tion around geoFS between Regal and Scality [80], and
will help transfer the CISE tools developed by Inria
Regal [12, 54–56] to Scality.

By ensuring guarantees, the RainbowFS approach
helps to develop novel applications easily without spe-
cialised distributed systems expertise. This lowers the
cost of entry and creates opportunities for the startup
ecosystem. By minimising synchronisation, this also
enables applications to run efficiently in commodity
clouds or clusters and achieve internet-size scalability
and fast growth. With previous approaches, these two
goals conflict.

Our approach will be applied to the development of a
file system, which has high economic value on its own
merit. Scality, a French SME whose development and
R&D teams are in France, is a world leader in massive
storage on commodity system architectures, an area of
great economic importance. The RainbowFS project
aims both to advance the scientific state of the art in
distributed systems and to enlarge Scality’s offerings.
Scality plans to include the file system in its offerings
within the timeframe of the project.

The RainbowFS technology will allow Scality to build
a file system on top of their object storage system. It
will support legacy applications, because the specific
consistency requirements needed by the application
will be proven. In addition, its versatile consistency
semantics, tunable to application requirements, will
appeal to a wider range of customers and market seg-
ments. Furthermore, our verification tools will enable
customers to check correctness. These features will
provide Scality with a significant competitive advant-
age.

Scality believes that the file system will provide a very
interesting offer, in line with current market demand
for storage technologies allowing a smooth transition
from a file-based storage model to an object-based
storage model. Scality currently estimates that this
transition will last around ten years, and corresponding
market to be approximately USD 100 billion. Thanks
to the RainbowFS technology, Scality hopes to “un-
lock” and lead this market, and strengthen its product
offer on top of the Scality object store, while comfort-
ing its leader role in the object storage world.
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