
Specification and verification of
consistency models

Paolo Viotti
UPMC - work done at Eurecom

RainbowFS kickoff meeting
May 4, 2017

 2

Consistency: an introduction
The ability of a storage system of maintaining a certain correct state (despite
concurrency, partial failures and asynchrony).

– both safety and liveness

● Where

– Architectures: shared memory, shared disk, shared nothing

– Databases: relational, NoSQL
● Transactional and non-transactional

– From CPU caches to geo-replicated systems

● Tradeoffs

– CAP, latency

 3

Full stack consistency

Application

Flow

Object

Storage

G
enerality

U
sa

bi
lit

y

Language

CISE tool

Bloom, Lasp

Blazes

CRDTs, LVars

Survey, Conver

 4

Outline

 Verifying consistency

Conver

 [ACM PaPoC ‘16]

Specifying consistency

An axiomatic approach

 [ACM Comput. Surv. ‘16]

 5

Specifications
of consistency models

● State-of-the-art definitions

– Informal, imprecise

– Incompatible

● Different contexts

– Shared-memory systems

– Databases

– Outsourced/cloud storage

 6

Consistency specifications:

Operational vs. Axiomatic

Based on logical conditions

✔ Composable

✔ Meaningful for users/designers

✔ Concise (even for weak models)

✔ Abstract away implementation

✗ Easy to get axioms wrong

Based on ref. implementation

✔ Robust specifications

✔ Refinement mappings to prove
implementations correct

✗ Easy to over-specify

✗ Weak models spec. are unwieldy

 7

Axiomatic consistency specifications

Consistency semantics as logic predicates

about ordering and visibility of events

P
A

P
B

P
C

so so

so

vis

 8

A model for axiomatic specifications
refining and extending [Burckhardt ‘14]

● Processes, objects, operations

● Execution ↔ History (set of operations)

● Relations on history
– rb: returns-before partial order

– ss, so: eq. relation and partial order on sessions

– ob: equivalence relation on objects

● Abstract execution = history, vis, ar
– vis: visibility, tracks propagation of writes

– ar: arbitration total order, how system resolves conflicts

 9

A model for axiomatic specifications
refining and extending [Burckhardt ‘14]

● Operation context

– Model state of execution as graph

– Projection on abstract execution

● Return-value consistency

– “Expected” set of return values according to context and…

– …to the replicated data type (set, queue, register…)

● Consistency models as logic predicates on abstract executions

 10

A survey of consistency semantics

40+ predicates from 30+ years of research

 11

A partial ordering of models

 12

A partial ordering of models

 13

A partial ordering of models

 14

Outline

 Verifying consistency

Conver

 [ACM PaPoC ‘16]

Specifying consistency

An axiomatic approach

 [ACM Comput. Surv. ‘16]

 15

Consistency and the real world

CONSISTE
NT!*

*: terms and conditions may apply.

 16

Verifying consistency:
state of the art

● Strong consistency checkers
– binary decision problem

● Staleness
– for eventually consistent clouds

● Precedence graph
– transactional systems

● Application-level invariant checkers

 17

Verifying consistency:
theoretical results

● Linearizability
– NP-complete (polynomial)* [Gibbons et al., ‘97]

– Model checking, 1 execution: EXPSPACE [Alur et al., ‘00]

● Sequential consistency
– Combinatorial problem, 1 execution: NP-complete [Gibbons et al., ‘92]

– Model checking, 1 execution: undecidable [Alur et al. ‘00]

● Causal consistency [Bouajjani et al., ‘17]

– Implementation: undecidable (decidable)*

– 1 execution: NP-complete (polynomial)*

● Eventual consistency*

– Model checking, 1 execution: EXSPACE-hard [Bouajjani et al., ‘14]

 18

Testing distributed systems

● Traditional testing, distributed tracing, monitoring
– Dapper, Zipkin, ...printf()

● “Smart testing”
– Property-based testing, fault injection (Jepsen), directed random tests,

deterministic simulations

● Formal methods
– Model checking

– Correctness-by-construction (Coq, TLA+…): Verdi, IronFleet, Chapar

– “Lightweight FM”: invariants verification through SMT: CISE tool

C
O

N
F

ID
E

N
C

E E
A

S
E

 O
F

 U
S

E

Conver

 19

Property-based consistency
verification

Verify consistency semantics as

axiomatic invariants of executions

 20

Property-based testing

A simple example (in Erlang):

reverse([]) ->
[];

reverse([X|Xs]) ->
reverse(Xs) ++ [X].

prop_reverse() ->
?FORALL(Xs, list(int()),

reverse(reverse(Xs))==Xs).

Function to reverse a list Property:
for every list Xs, reverse(reverse(Xs)) == Xs

 21

Conver: architecture

Consistency
Predicates

Verification

Test case generation

Targeted Random

Executions

OK

Fault Injection

Visualization

KO

WAN Emulation

 22

Conver prototype

● Open source prototype in Scala
– github.com/pviotti/conver-scala

● Automatic local deployment with Docker

● Can verify 7 consistency models

● 2 data stores (Riak, ZooKeeper)
● easily extensible

 23

Conver - outputs

 24

Summary

● Declarative/axiomatic specifications of consistency models
● To reason about and compare them
● To verify real-world implementations

Future work
● Prove strength relations between consistency models
● Extend Conver

● Transactional semantics
● Map application invariants to storage semantics

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

