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Consistency: an introduction

The ability of a storage system of maintaining a certain correct state (despite
concurrency, partial failures and asynchrony).

- both safety and liveness

Where

— Architectures: shared memory, shared disk, shared nothing

- Databases: relational, NoSQL
 Transactional and non-transactional

- From CPU caches to geo-replicated systems

Tradeoffs
- CAP, latency




Full stack consistency

Application CISE tool
Language Bloom, Lasp
Flow Blazes
Object CRDTs, LVars
Storage Survey, Conver




Outline

Specifying consistency
An axiomatic approach

[ACM Comput. Surv. “16]

=

Verifying consistency

Conver

[ACM PaPoC ‘16]




Specifications
of consistency models

« State-of-the-art definitions
- Informal, imprecise

- Incompatible
I heard it's fun, let's write a survey.
_ Definin
* Different contexts 2

Consistency

- Shared-memory systems
How to come up with new, indispensable definitions.

- Databases

— Qutsourced/cloud storage

é O'Really?! ®




Consistency specifications:

Operational vs. Axiomatic

Based on ref. implementation Based on logical conditions
v Robust specifications v Composable
v Refinement mappings to prove v Meaningful for users/designers

implementations correct :
v Concise (even for weak models)

v Abstract away implementation
X Easy to over-specify

X Weak models spec. are unwieldy X [Easy to get axioms wrong
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Axiomatic consistency specifications

Consistency semantics as logic predicates

about ordering and visibility of events
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A model for axiomatic specifications
refining and extending [Burckhardt ‘14]

Processes, objects, operations

Execution < History (set of operations)

Relations on history
- rb: returns-before partial order
- 88, s0: eq. relation and partial order on sessions

— ob: equivalence relation on objects

Abstract execution = history, vis, ar
— vis: visibility, tracks propagation of writes

— ar: arbitration total order, how system resolves conflicts
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A model for axiomatic specifications
refining and extending [Burckhardt ‘14]

* Operation context
- Model state of execution as graph

— Projection on abstract execution

* Return-value consistency
- “Expected” set of return values according to context and...

- ...to the replicated data type (set, queue, register...)

« Consistency models as logic predicates on abstract executions

HEPIA- AP, IAc A HA) =HAAE=P, A AP,



A survey of consistency semantics

40+ predicates from 30+ years of research
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Outline

Specifying consistency
An axiomatic approach

[ACM Comput. Surv. “16]

=

Verifying consistency

Conver

[ACM PaPoC ‘16]
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Consistency and the real world

*: terms and conditions may apply.
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Verifying consistency:
state of the art

Strong consistency checkers

— binary decision problem

Staleness
- for eventually consistent clouds

Precedence graph

- transactional systems

Application-level invariant checkers
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Verifying consistency:
theoretical results

Linearizability
- NP-complete (polynomial)* [Gibbons et al., ‘97]
— Model checking, 1 execution: EXPSPACE [Alur et al., ‘00]

Sequential consistency
— Combinatorial problem, 1 execution: NP-complete [Gibbons et al., ‘92]

- Model checking, 1 execution: undecidable [Alur et al. ‘00]

Causal consistency [Bouajjani et al., “17]
- Implementation: undecidable (decidable)*

- 1 execution: NP-complete (polynomial)*

Eventual consistency”

~ Model checking, 1 execution: EXSPACE-hard [Bouajjani et al., ‘14]

v
v 17



CONFIDENCE

Testing distributed systems

* Traditional testing, distributed tracing, monitoring
— Dapper, Zipkin, ...printf( )

e “Smart testing”

— Property-based testing, fault injection (Jepsen), directed random tests,
deterministic simulations Conver

* Formal methods
- Model checking
— Correctness-by-construction (Coq, TLA+...): Verdi, IronFleet, Chapar
- “Lightweight FM”: invariants verification through SMT: CISE tool

18
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Property-based consistency
verification

Verify consistency semantics as

axiomatic invariants of executions

19



Property-based testing

A simple example (in Erlang):

Function to reverse a list Property: _
for every list Xs, reverse(reverse(Xs)) == Xs

reverse([]) ->
[]1; prop reverse() ->

reverse([X|Xs]) -> ?FORALL(Xs, list(int()),
reverse(Xs) ++ [X]. reverse(reverse(Xs))==Xs).

3= proper:quickcheck(qc_test:prop_reverse(]].
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Conver: architecture

Test case generation

>
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Conver prototype

* Open source prototype in Scala
— github.com/pviotti/conver-scala

* Automatic local deployment with Docker

Linearizability

* Can verify 7 consistency models . /r ‘} |
equentia ggular
. Causal
e 2 data stores (Riak, ZooKeeper) T
 easily extensible / \

lntcr—scss.;i-?"-n Scssio.n. Write-follow-reads
monotonicity monotonicity
(MR and MW) (RYW)

<L«
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Conver - outputs
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Summary

* Declarative/axiomatic specifications of consistency models
* To reason about and compare them
* To verify real-world implementations

Future work

* Prove strength relations between consistency models
e Extend Conver

* Transactional semantics

* Map application invariants to storage semantics
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