Specification and verification of
consistency models

Paolo Viotti
UPMC - work done at Eurecom

RainbowFS kickoff meeting
May 4, 2017

Consistency: an introduction

The ability of a storage system of maintaining a certain correct state (despite
concurrency, partial failures and asynchrony).

- both safety and liveness

Where

— Architectures: shared memory, shared disk, shared nothing

- Databases: relational, NoSQL
 Transactional and non-transactional

- From CPU caches to geo-replicated systems

Tradeoffs
- CAP, latency

Full stack consistency

Application CISE tool
Language Bloom, Lasp
Flow Blazes
Object CRDTs, LVars
Storage Survey, Conver

Outline

Specifying consistency
An axiomatic approach

[ACM Comput. Surv. “16]

=

Verifying consistency

Conver

[ACM PaPoC ‘16]

Specifications
of consistency models

« State-of-the-art definitions
- Informal, imprecise

- Incompatible
I heard it's fun, let's write a survey.
_ Definin
* Different contexts 2

Consistency

- Shared-memory systems
How to come up with new, indispensable definitions.

- Databases

— Qutsourced/cloud storage

é O'Really?! ®

Consistency specifications:

Operational vs. Axiomatic

Based on ref. implementation Based on logical conditions
v Robust specifications v Composable
v Refinement mappings to prove v Meaningful for users/designers

implementations correct :
v Concise (even for weak models)

v Abstract away implementation
X Easy to over-specify

X Weak models spec. are unwieldy X [Easy to get axioms wrong

=

Axiomatic consistency specifications

Consistency semantics as logic predicates

about ordering and visibility of events

_U
>
®
\d
o
\
o

o
@
I~
(75

SO

M

A model for axiomatic specifications
refining and extending [Burckhardt ‘14]

Processes, objects, operations

Execution < History (set of operations)

Relations on history
- rb: returns-before partial order
- 88, s0: eq. relation and partial order on sessions

— ob: equivalence relation on objects

Abstract execution = history, vis, ar
— vis: visibility, tracks propagation of writes

— ar: arbitration total order, how system resolves conflicts

=

A model for axiomatic specifications
refining and extending [Burckhardt ‘14]

* Operation context
- Model state of execution as graph

— Projection on abstract execution

* Return-value consistency
- “Expected” set of return values according to context and...

- ...to the replicated data type (set, queue, register...)

« Consistency models as logic predicates on abstract executions

HEPIA- AP, IAc A HA) =HAAE=P, A AP,

A survey of consistency semantics

40+ predicates from 30+ years of research

LINEARIZABILITY(F)
SINGLEORDER

REALTIME

REGULAR(.F)

SAFE(F)

REALTIMEWRITES
SEQRVAL(F)
EVENTUALCONSISTENCY(.F)

EVENTUALVISIBILITY
NOCIRCULARCAUSALITY
STRONGCONVERGENCE
STRONGEVENTUALCONS. (JF)
QUIESCENTCONSISTENCY(F)

PRAM

SINGLEORDER A REALTIME A RVAL(F)

dH Clope H:opoval =V} ivis =ar\ (H = H)

rlh T ar

SINGLEORDER A REALTIMEWRITES A RVAL(F)
SINGLEORDER A REALTIMEWRITES A SEQRVAL(F)
mb|wr—op © ar

Yop e H : Concur(op) = 0 = op.oval € Flop,ext{ A, op))

EVENTUALVISIBILITY A NOCIRCULARCAUSALITY A
RVAL(F)

Yae HY[fle Hf =..: [{be[f] : (a 2, b Ao —— b} < oo
acyelicl)

Va, b € H|pq : vis™ Ha)lwy = vis™ {b)|we = a.oval = b.oval
EVENTUALCONSISTENCY(F) A STRONGCONVERGENCE

H|p| <o0o=3CeC:V[fle Hf =, |{op €[f]:
op.oval & Flop, O} < o

S0 Ll TS

10

! Bounded
i fork-join

causal

i Fork-join

\
+ causal

Fork-based ™
. models -

Fork*

A partial ordering of models

Timed serial

N, & A l-atomicity
"\ el
" Sequential
‘h
A
Weak ¢
fork-lin.}

Fork

Real-time "

causal K Pref 1%
z v sequential

f

Timed
causal '
Causal |
models ;'

Read-my-writes
(RMW)

Writes-follow-reads

(WFR) (MW}

/chular

Monotonic Writes

Linearizability

Prefix
lingarizable

J/" Per-object
models

/ Processor
.

Per-key Per-record
. sequential timeline
! \ &
: Coherence

Per-object
causal

Slow
memory

Synchronizefl‘~.
’ models
Weak ordering

Release

Lazy release

Scope

*

N Entry

. Location ¢

"
"

'
\

]
[l

Monotonic Reads
(MR)

Eventual
linecarizability
A
./"Staleness-based ™, Strong
. kY 7
models | eventual
k-atom]cnky \ Eventual
Sounded 4 Y| serializability
staleness) N
g lI| r
Delta ‘. |
k-regular , !
H i
! :
II :
PBS |
‘\t-visibilit |
5 PBS :
k-staleness’ ,
k-safe ‘, :
g Eventual
Quiescent

Composite and tunable
models

= Hybrid
= Tunable
« Rationing
= RedBlue
= Conit
= Vector-field
PBS <k t>-staleness

11

i fork-join

,"’ Fork

! Bounded

causal

\ Fork*

[
+Fork-join
\

+ causal

" Fork-based

. models

.

N

sequential

fork-lin. ",

Weak '

Fork |

Writes-follow-reads

(WFR)

A partial ordering of models

el

Sequential

Real-time "
causal

Timed
causal
Causal
models

Read-my-writes
(RMW)

Timed serial
& A,T-atomicity

Prefix
sequential

f

Monotonic Writes
(MW)

Prefix
linearizable

; Processor
I

Monotonic Reads

" Per-object
models

Per-key

sequential \

Per-object
causal

(MR)

Per-record
timeline
&
Coherence

Y ’Synchronized‘
models
Weak ordering
Release

Lazy release

Scope

Entry

. Location

"
\

'
"

Eventual
linearizability
A
."Staleness-based“\ Strong
. el N eventual
k-atomlu:y N Eventual
Bounded 1 ' serializability
staleness | A
& |
& \ R
Delta \ ! .
k-regular I'. ! Composite and tunable
! E models
] | Hybrid
; i = Tunable
h ' » Rationing
PBS / 1 = RedBlue
. ! E = Conit
'M PBS ,"J i = Vector-field
k-slalcncss-’f '« PBS <k.t>-staleness
k-safe e i
-t Eventual
Quiescent

12

1
Il
]
1
'

A partial ordering of models

Timed serial Regular

n, & A.J-atomicity Eventual
-4 li iz ll?l't
/ \ Sequential -_— incarizability
/ l‘.l linearizable S 4
H Wcak ‘\I - =TTt . - . . ‘M\\
T Safe K . .'Staleness-based ™, Strong
o . . . /
i -, ’ Per-object v eventual
. models .
B models . R n
Bounded Real-fime ™, 7 Processor h s s -
fork-join causal | Rl ' Syndn;jm;mx'\ . Eventual
causal i sequential e \/ Bounded 1‘ \ serializability
causal : v/ Weakordering % ¢ staleness ' A
= i Per-key Per-record | ! Vo & A
Causal | sequential i v Vi Del ;] :
Fork models : . \ Hmeine Release Vi cia : ! Composite and tunable |
sequential ! : & i b k-regular i i del :
J \ Coherence |! i ; | models |
Fork* " Lazy release o ! : |
Per-obi i [! i = Hybrid |
" Fork-join .- TCt [Scope i : ! = Tunable
\ causal i P A h ! = Rationing |
Enry /% pBS i Lo gzﬂﬁlue :
" \“ Location v ~,lt-v15|b1|1m PBY / i e Vector-field i
*, Fork-based ™\ k-staleness ! = PBS <kt=-staleness !
. models -’ - k-safe e
¢ Writes-follow-reads Read-my-writes Monotonic Writes ~ Monotonic Reads - I
(WFR) (RMW) (MW) (MR) ""'A’r‘ 1
Quiescent

13

Outline

Specifying consistency
An axiomatic approach

[ACM Comput. Surv. “16]

=

Verifying consistency

Conver

[ACM PaPoC ‘16]

14

Consistency and the real world

*: terms and conditions may apply.

15

<KL

Verifying consistency:
state of the art

Strong consistency checkers

— binary decision problem

Staleness
- for eventually consistent clouds

Precedence graph

- transactional systems

Application-level invariant checkers

16

Verifying consistency:
theoretical results

Linearizability
- NP-complete (polynomial)* [Gibbons et al., ‘97]
— Model checking, 1 execution: EXPSPACE [Alur et al., ‘00]

Sequential consistency
— Combinatorial problem, 1 execution: NP-complete [Gibbons et al., ‘92]

- Model checking, 1 execution: undecidable [Alur et al. ‘00]

Causal consistency [Bouajjani et al., “17]
- Implementation: undecidable (decidable)*

- 1 execution: NP-complete (polynomial)*

Eventual consistency”

~ Model checking, 1 execution: EXSPACE-hard [Bouajjani et al., ‘14]

v
v 17

CONFIDENCE

Testing distributed systems

* Traditional testing, distributed tracing, monitoring
— Dapper, Zipkin, ...printf()

e “Smart testing”

— Property-based testing, fault injection (Jepsen), directed random tests,
deterministic simulations Conver

* Formal methods
- Model checking
— Correctness-by-construction (Coq, TLA+...): Verdi, IronFleet, Chapar
- “Lightweight FM”: invariants verification through SMT: CISE tool

18

4SSN 40 4SV4

Property-based consistency
verification

Verify consistency semantics as

axiomatic invariants of executions

19

Property-based testing

A simple example (in Erlang):

Function to reverse a list Property: _
for every list Xs, reverse(reverse(Xs)) == Xs

reverse([]) ->
[]1; prop reverse() ->

reverse([X|Xs]) -> ?FORALL(Xs, list(int()),
reverse(Xs) ++ [X]. reverse(reverse(Xs))==Xs).

3= proper:quickcheck(qc_test:prop_reverse(]].

<KL

Conver: architecture

Test case generation

>

2

Consistency
Predicates

Targeted Random

v

Executions -

l

KO

Fault Injection

WAN Emulation

Verification 1

Visualization
[oM
w(3) iwpr\
wil) R2 z
W(4) R4

«

21

Conver prototype

* Open source prototype in Scala
— github.com/pviotti/conver-scala

* Automatic local deployment with Docker

Linearizability

* Can verify 7 consistency models . /r ‘} |
equentia ggular
. Causal
e 2 data stores (Riak, ZooKeeper) T
 easily extensible / \

lntcr—scss.;i-?"-n Scssio.n. Write-follow-reads
monotonicity monotonicity
(MR and MW) (RYW)

<L«

22

Conver - outputs

St opfclient: 10
Se
Client caon |l.-_'C'|'1r|C| 1
Client connecting 1
Client connecting 1 A
Client connecting 1 !
Client connecting to 1 Rl R RZ A2 3

L connecting 1

1t connecting to 1

1t connecting to 1

connecting to 1 .

1t connecting to 1 2 L3, 217
Cycle found: Cyclelb: r: 26- g ar, d:w:19, d:iw:
Removing edge from cycle: ") ; B l ’7 ‘
Cycle found: Cyclelj: Wil ar, diw:19, d:iw:
Mo vertex ordered by rb Tmlnn:l in c;c'l . vin raru:lamg-:lg o0 Wi2) Wi3) B Wid) WIB)

Trl1':|1 arder I,ti.-_'ht:ltllu.-_'l el frwel

re e
Anomalies: d:r:19 1:r:31 | ‘ -- H
Linearizability Wil R:2 W(5) R W(7)

ality (WFRI....... cvvun.
on Monotonicity (MR, MW
11 | W)

H H i |:__:| [V

23

Summary

* Declarative/axiomatic specifications of consistency models
* To reason about and compare them
* To verify real-world implementations

Future work

* Prove strength relations between consistency models
e Extend Conver

* Transactional semantics

* Map application invariants to storage semantics

24

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

