
Distributed File Systems
- an overview

Pierre Sutra,
Télécom SudParis

RainbowFS kick-off meeting
4-5 May 2017, Montereau

Distributed File Systems - P.Sutra - RainbowFS

1/4Basics

inode:
/

inode: /bin

inode:
/home

(metadata)
============
bin
home

(metadata)
============
ls

(metadata)
============
(empty dir)

block b4

0011011111001
111000 ...

inode: /bin

(metadata)
============
b4
b8

block b8

1111011111001
001010 ...

inode = container for file, directory, symbolic link, special files.
block = data content

Distributed File Systems - P.Sutra - RainbowFS

1/4

* interface given for File System in User-Space (POSIX-compliant)

Basics - interface*

int(* create)(const char *, mode_t, struct fuse_file_info *)

int(* open)(const char *, struct fuse_file_info *)

int(* read)(const char *, char *, size_t, off_t, struct fuse_file_info *)

int(* write)(const char *, const char *, size_t, off_t, struct fuse_file_info *)

int(* flush)(const char *, struct fuse_file_infor *)

int(* rename)(const char *, const char *)

int(* statfs)(const char *, struct statvfs *)

int(* unlink)(const char *)

Distributed File Systems - P.Sutra - RainbowFS

1/4Basics - consistency*

rename() 0

rename() -1

w(f,f1)

g0

w(g,g1)

r(g) r(f) f0

w(f,f1) r(f)

w(f,f2) r(f) f0

f0

linearizability POSIX,
Lustre

sequential
consistency

Sprite,
HDFS,
GoogleFS

Pastis
eventual
consistency

* flush() operations are missing

Distributed File Systems - P.Sutra - RainbowFS

1/4Basics - consistency

AFS, NFS

SinfoniaFS

Coda, Ivy

w(f,f1)

g2

r(g)

w(g) r(f) f0

o cg0

o c

w(f,f1)o c

r(f) f0o c

w(f,f1)o c

r(f) f1o c r(f) f0o c

With close-to-open semantics

linearizability

sequential
consistency

eventual
consistency

Distributed File Systems - P.Sutra - RainbowFS

1/4Basics - system design - NFS

Idea. share transparently file systems

Features.
server-client architecture
no globally-shared file system
RPCs for mount + remote file access

Limitations.
all data served by a single server
synchronous writes (≤ v2)

/nfs

 mount -t nfs 10.0.0.1:/nfs /shared/foo

/shared/foo/bar

/nfs

 mount -t nfs 10.0.0.2:/nfs /shared/foo/bar

Distributed File Systems - P.Sutra - RainbowFS

1/4Basics - system design - HDFS

read/write
datalocate

blocks

name-node
(metadata)

Idea. metadata operation are fast
→ decouple data/metadata operations

Features.
name-node keeps metadata in-memory + log
data nodes hold (replicated) file blocks
large blocks (128MB)
location of blocks reported by data node

Limitations.
at most PB scale
log should be persistent (e.g., using ZooKeeper)
name-node = single point of failure

 bottleneck on metada-heavy
workload

data-nodes

Distributed File Systems - P.Sutra - RainbowFS

1/4Basics - system design - Lustre

read/write
datalocate

blocks

metadata
servers
(MDS)

Idea. use multiple metadata servers

Features.
POSIX-compliant
directories may span multiple MDS (≥ 2.4)
OSS = object based disk server + lock server
support for Infiniband, RDMA
hadoop support (from Intel)

Limitations.
not build for commodity hardware
→ no data replication (outside of RAID)

object storage
servers (OSS)

Distributed File Systems - P.Sutra - RainbowFS

1/4Directions

How to scale the metadata server(s) ?

Is it possible to implement a fully distributed DFS?

What are the trade-off regarding consistency, performance and availability ?

Distributed File Systems - P.Sutra - RainbowFS

1/4

Idea. split the file system tree such that
- if path p is stored at machine M, then M also stores parent(p)
- when applying command c to p, executes c on all the machines storing p (in a

consistent and wait-free manner)

Evaluation.
- ZooFence = split ZooKeeper tree
- Bookkeeper = ZooKeeper based write-ahead log
- setting 18 nodes, rep. factor = 3
- workload

entry[] = random(0,B) // B bytes
open(“/new_log”,CREATE|WRITE);
write(“/new_log”,0,entry); // #times
close(“/new_log”)

Directions - scaling-up a metadata server [SRDS14]

https://drive.google.com/open?id=0BwFkGepvBDQobnJ2WWtDVjNXUlE

Distributed File Systems - P.Sutra - RainbowFS

1/4Directions - scaling-up a metadata server

Zk = ZooKeeper
Zf = ZooFence (split tree)

log size = 128,256,1024 or 2056
#entries = 100, 250, 500 or 1000

split tree always faster (up to 45%)

Distributed File Systems - P.Sutra - RainbowFS

1/4Directions - no metadata server [MasterProject17]

Idea. implement a file system with put(), get() and c&s().

Example.

create(path,mode,info)
iblock = new IBlock(info)
return c&s(path,null,tmp)

open(path,mode,info)
iblock = get(path)
files[path] = (iblock == null) ? iblock : new IBlock()
return check_perm(files[path],more)

https://drive.google.com/open?id=1veqoeABvAzqYAofBW-_DemW60rJ8U6cwjM1wy9N8BI4

Distributed File Systems - P.Sutra - RainbowFS

1/4Directions - no metadata server

Design space.

- base solution = read/write full file each time
- variation 1 = split files in blocks
- variation 2 = read/write blocks in parallel

Evaluation.

- POSIX-compliant (single writer)
- use Cassandra
- python language (fuse.py)

Distributed File Systems - P.Sutra - RainbowFS

1/4Directions - no metadata server

setting 4 nodes, rep. factor = 2,
block size = 20KB

workload time dd if=/dev/zero
of=test bs=1024k count=XXX

Distributed File Systems - P.Sutra - RainbowFS

1/4Directions - consistency trade-off [DAIS13]

Idea. performance comparison of DFS consistency criteria

setting 3 nodes, rep. factor = 2,
block size = 128 kB

workload touch /path/to/file

1 = roundtrip cost

https://drive.google.com/open?id=0BwFkGepvBDQoSWtaUnh1WWZFcjA

Distributed File Systems - P.Sutra - RainbowFS

1/4Directions - consistency trade-off

Idea. performance comparison of DFS consistency criteria

setting 3 nodes, rep. factor = 2,
block size = 128 kB

workload cat /path/to/file

1 = roundtrip cost

Distributed File Systems - P.Sutra - RainbowFS

1/4Directions - consistency trade-off

Idea. performance comparison of DFS consistency criteria

setting 3 nodes, rep. factor = 2,
block size = 128 kB

workload time dd if=/dev/zero
of=test bs=1024k count=XXX

CTO = close-to-open semantics

Distributed File Systems - P.Sutra - RainbowFS

1/4Take aways

State of the game.

- POSIX specification difficult to grasp
(plain english, many pages)

- a lot of DFS exist, with various semantics
- over time, more distribution/parallelism

→ more performance / availability

Directions.

- scaling a metadata server (split tree) is complex
- better to use no data server (?)

→ e.g., add a read-modify-write to key/value store
- trade-off between DFS semantics / performance

→ depends on workload / block size

