
CRESON: Callable and Replicated
Shared Objects over NoSQL*

 to appear in ICDCS 2017, Atlanta, GA, USA

Pierre Sutra, Etienne Rivière,
Cristian Cotes, Marc Sánchez Artigas, Pedro Garcia Lopez,
Emmanuel Bernard, William Burns and Galder Zamarreño

Télécom SudParis, CNRS, Université Paris-Saclay, France

University of Neuchâtel, Switzerland

Universitat Rovira i Virgili, Tarragona, Spain

Red Hat

*slides by E. Rivière

CRESON / RainbowFS kick-off / Pierre Sutra

Building scalable Cloud applications

• Cloud applications handle large amounts of clients
- Large amounts of data: need scalable data storage
- Pay-as-you-go model requires elastic scaling

• Failures happen often and must not break service
- Application data stored in database persistently
- Multiple copies: consistency under concurrent operations

• Application design must be simple and scalable
- Easy-to-learn programming model and database integration
- Sharing of data between application instances with database

2

CRESON / RainbowFS kick-off / Pierre Sutra

• Scaling “traditional” relational (SQL) databases
☹ Limited horizontal scalability, poor support for elasticity

- Sharding is complex and static, no cross-shard consistency

☹ Fault tolerance with master/slave replication

• NoSQL databases to the rescue
☹ Simpler data schema and querying

- Only primary index: key/value store, no support for joins

☹ Independent accesses to different keys
☹ Excellent horizontal scalability and elasticity

There is not only SQL
3

CRESON / RainbowFS kick-off / Pierre Sutra

NoSQL for scalable applications
4

CRESON / RainbowFS kick-off / Pierre Sutra

NoSQL for scalable applications
5

CRESON / RainbowFS kick-off / Pierre Sutra

NoSQL for scalable applications
6

CRESON / RainbowFS kick-off / Pierre Sutra

Typical Cloud-based application
7

CRESON / RainbowFS kick-off / Pierre Sutra

NoSQL databases

• Many flavours of NoSQL
- General-purpose or {Document,Graph,Column}-oriented

• Interface = variation of a key/value store API
- Some also support transactions, scans, etc.

8

CRESON / RainbowFS kick-off / Pierre Sutra

NoSQL in an object-oriented application

• Object-oriented programming = prevalent model

• Data shared between application instances
 Objects survive termination of application instances
 & failure of NoSQL servers

• Database storage and in-memory objects use different
representations
 But require a mapping phase between the two representations
 impedance mismatch

9

CRESON / RainbowFS kick-off / Pierre Sutra

State-of-the-art: Object-DB mappers

• Object-Relational Mapper
- Store application objects in relational database
- Hibernate
- Integration with OO langage (e.g., Java)

• Object-NoSQL Mapper
- Maps and store application objects in NoSQL database
- Hibernate OGM, MongoDB Morphia, Google’s Objectify

1
0

CRESON / RainbowFS kick-off / Pierre Sutra

Client-side Object-NoSQL mapping

☹ Access to object: fetch full serialized representation from DB
• Objects instantiated locally and their methods also called locally
• Some objects may grow very large

- Methods may access only a small part of their content
• Data structure (e.g. graph) traversal = multiple back-and-forth with DB

☹ Concurrent accesses to objects with no strong consistency

• Objectify (part of Google App Engine) not thread-safe

1
1

CRESON / RainbowFS kick-off / Pierre Sutra

CRESON: objectives

● Support callable objects over NoSQL
○ Application objects instantiated from the DB at the server side

- No shipping of any serialized representation over the network
○ Method calls also performed at the server side

● Dependability and concurrent accesses to shared objects
○ Objects are replicated for persistence
○ Replication happens at the level of operations (method calls)

- No shipping of full serialized state between replicas

- Shared objects with strong consistency guarantees
- Including for composed operations accessing multiple objects

12

CRESON / RainbowFS kick-off / Pierre Sutra

CRESON: server-side mapping
13

CRESON / RainbowFS kick-off / Pierre Sutra

Outline

• Introduction and motivation

• Server-side Object-NoSQL mapping with CRESON

• CRESON design

• LKVS abstraction

• Object management components

• State Machine Replication

• Guarantees

• Portage of an existing application, StackSync, to CRESON

• Client-side interface

• Evaluation

14

CRESON / RainbowFS kick-off / Pierre Sutra

CRESON: components

• LKVS: novel NoSQL storage abstraction
- Listenable Key-Value Store
- Extends key-value API

• Object management logic atop the LKVS
- Implemented as part of the listener handlers
- Maintain multiple replicas of the object
- Implement state-machine replication (operation-based)

• Client-side integration with the Java language
- Using annotations (similar to JPA)

15

CRESON / RainbowFS kick-off / Pierre Sutra

Listenable Key/Value Store

• Classical Key/Value API
- void put(K k, V v)
- V get(K k)

• Two new calls
- void regListener(K k, Handler h, Listener l)
- void unregListener(K k, Listener l)

16

CRESON / RainbowFS kick-off / Pierre Sutra

LKVS illustrated
17

CRESON / RainbowFS kick-off / Pierre Sutra

LKVS illustrated
18

CRESON / RainbowFS kick-off / Pierre Sutra

LKVS illustrated
19

CRESON / RainbowFS kick-off / Pierre Sutra

LKVS illustrated
20

CRESON / RainbowFS kick-off / Pierre Sutra

LKVS illustrated
21

CRESON / RainbowFS kick-off / Pierre Sutra

LKVS illustrated
22

CRESON / RainbowFS kick-off / Pierre Sutra

LKVS illustrated
23

CRESON / RainbowFS kick-off / Pierre Sutra

Object management in CRESON (1)

• Client-side proxy

• First opening of object for key k by a client
- Not in DB: instantiate new object, server side
- Serialized in DB: use mapping, server side

• Object closed by last client for key k
- Object serialized, server side, stored in DB

• Method calls and object creation/closing
are sent with put() calls for key k
- Intercepted by handlers registered with key k
- caller receives the result as a notification

24

CRESON / RainbowFS kick-off / Pierre Sutra

Object management in CRESON (2)
25

• Two types of handlers for each key

• One Session handler per client
- Associated with one listener client
- Ignore operation if from another client
- Forward to object handler otherwise

• Object handler owns actual object
- Issues method calls
- Send return values to session handlers

CRESON / RainbowFS kick-off / Pierre Sutra

State Machine Replication

● To survive faults, objects are replicated at the LKVS side
- Multiple copies of serialized objects
- Multiple in-memory instances of the same live shared object

● Operation-based replication
- replicas receive the same stream of operations
- Order is total,

● Constraint: objects must be deterministic
- Reach unique state from any possible (state, operation) pair
- Easy to achieve if no use of independent pseudo-random numbers generator

26

CRESON / RainbowFS kick-off / Pierre Sutra

Putting everything together
27

CRESON / RainbowFS kick-off / Pierre Sutra

CRESON guarantees

✓ Strong consistency: linearizability

✓ Wait-freedom for shared objects

✓ Composition
- A shared object can call other objects
- Maintains linearizability

✓ Persistence

✓ Disjoint-access parallelism
- Accesses to distinct objects use distinct LKVS components

✓ Elasticity

28

CRESON / RainbowFS kick-off / Pierre Sutra

Use case and Interface

• Collaboration with EU project CloudSpaces
- Open-source Dropbox-like application
- Synchronization of user file system with cloud-stored file system
- Sharing of folders and files between users spaces

• Trace collected from Ubuntu U1 personal cloud service

• Data stored in OpenStack Swift

• Metadata requires strongly consistent storage

29

CRESON / RainbowFS kick-off / Pierre Sutra

Original Metadata Management

• PostgreSQL relational database

• Performance: use of stored procedures implementing app. logic at server side

• Scalability: sharded (partitioned) database using PL/Proxy
• No support for elastic scaling
• No consistency (ACID) guarantees across shards

30

CRESON / RainbowFS kick-off / Pierre Sutra

Metadata Management with
CRESON

• Logic for metadata management re-implemented in
plain Java, as methods in StackSync’s classes

• Which objects to store in CRESON ?

• Embedding Item, etc. to Workspace

• Portage was less than a week of effort

• Code is simpler and more coherent than with SQL

31

independent objects stored in CRESON

embedded objects

CRESON / RainbowFS kick-off / Pierre Sutra

CRESON interface
• Integration in Java (using AspectJ)

• using JPA

• @Entity(key = “id”) annotation

• Object o of this class stored in CRESON
under key (classname+”:”+o.id)

• Store static field in CRESON under key
(classname+”:”+id)
- Only applies to static fields!

• No further action required from developer

• Shared maps (e.g. deviceIndex) are
transparently stored as collections in LKVS

32

@Entity(key = "id")
public class Workspace {

 public UUID id;
 private Item root;
 private List<User> users;

 /* ... */

 public boolean isAllowed(User user) {
 return users.contains(user.getId());
 }
}

@Entity(key = "id")
public class Facade {

 @Entity(key = "deviceIndex")
 public static Map<UUID,Device> devices;

 @Entity(key = "workspaceIndex")
 public static Map<UUID,Workspace> workspaces;

 @Entity(key = "userIndex")
 public static Map<UUID,User> users;

 public UUID id;

 /* ... */

 public boolean add(Device device) {
 return deviceMap.putIfAbsent(

 device.getId(),device) == null;
 }
}

CRESON / RainbowFS kick-off / Pierre Sutra

CRESON implementation

• LKVS support added to Infinispan
- Industrial-grade NoSQL in-memory DB
- Basis for Red Hat JBoss Data Grid product
- CRESON integration (staging) as core ISPN feature

• Implementation in Java
- LKVS = 13,500 SLOC ; CRESON = 4,000 SLOC

• Optimizations (not covered)
- Listener mutualization
- Chaining calls idempotency
- Client-side caching

33

CRESON / RainbowFS kick-off / Pierre Sutra

Evaluation

• Cluster of 8-core/8GB Xeon 2.5 GHz, switched 1 Gbps
network

• 2 to 6 Infinispan servers (default = 3)
- Each server maintain a cache of 105 recently-used values (serialized
objects after their closing)
- Passivated to disk in the background
- Replication factor is 2 by default

34

CRESON / RainbowFS kick-off / Pierre Sutra

Base Infinispan performance
35

write-dominat
ed workload

read-dominated workloads
(higher is better)

CRESON / RainbowFS kick-off / Pierre Sutra

Single-object performance
36

max
single-key

throughput

CRESON overhead
for a single object

Accessing two
objects in sequence

(higher is better)

CRESON / RainbowFS kick-off / Pierre Sutra

Performance with multiple objects
37

(higher is better)

1 counter
2 counters
5 counters

10 counters

100 countersdisjoint access parallelism:
accessing distinct objects

increases throughput

CRESON / RainbowFS kick-off / Pierre Sutra

StackSync performance: throughput
38

(higher is better)(higher is better)

+ 2 additional PL/Proxy nodes

median performance
using 6 servers: +50%

CRESON / RainbowFS kick-off / Pierre Sutra

StackSync performance: latency
39

(leftmost is better)

CRESON / RainbowFS kick-off / Pierre Sutra

Conclusion

• NoSQL databases: scalability, elasticity and performance
but object-SQL mapping is costly

• CRESON = callable shared objects NoSQL
- Novel LKVS abstraction
- Simple programming model

• Better performance and elasticity than PostgreSQL

• Future work: support for queries over objects

40

