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Building scalable Cloud applications

• Cloud applications handle large amounts of clients
- Large amounts of data: need scalable data storage
- Pay-as-you-go model requires elastic scaling

• Failures happen often and must not break service
- Application data stored in database persistently
- Multiple copies: consistency under concurrent operations

• Application design must be simple and scalable
- Easy-to-learn programming model and database integration
- Sharing of data between application instances with database
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• Scaling “traditional” relational (SQL) databases
☹ Limited horizontal scalability, poor support for elasticity

- Sharding is complex and static, no cross-shard consistency

☹ Fault tolerance with master/slave replication

• NoSQL databases to the rescue
☹ Simpler data schema and querying

- Only primary index: key/value store, no support for joins

☹ Independent accesses to different keys
☹ Excellent horizontal scalability and elasticity

There is not only SQL 
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NoSQL for scalable applications
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NoSQL for scalable applications
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NoSQL for scalable applications
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Typical Cloud-based application
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NoSQL databases

• Many flavours of NoSQL
- General-purpose or {Document,Graph,Column}-oriented

• Interface = variation of a key/value store API
- Some also support transactions, scans, etc.
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NoSQL in an object-oriented application

• Object-oriented programming = prevalent model

• Data shared between application instances
 Objects survive termination of application instances
    & failure of NoSQL servers

• Database storage and in-memory objects use different 
representations
 But  require a mapping phase between the two representations
       impedance mismatch
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State-of-the-art: Object-DB mappers

• Object-Relational Mapper
- Store application objects in relational database
- Hibernate
- Integration with OO langage (e.g., Java)

• Object-NoSQL Mapper
- Maps and store application objects in NoSQL database
- Hibernate OGM, MongoDB Morphia, Google’s Objectify

1
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Client-side Object-NoSQL mapping

☹ Access to object: fetch full serialized representation from DB
• Objects instantiated locally and their methods also called locally 
• Some objects may grow very large

- Methods may access only a small part of their content
• Data structure (e.g. graph) traversal = multiple back-and-forth with DB

☹ Concurrent accesses to objects with no strong consistency

• Objectify (part of Google App Engine) not thread-safe

1
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CRESON: objectives

● Support callable objects over NoSQL
○ Application objects instantiated from the DB at the server side

- No shipping of any serialized representation over the network
○ Method calls also performed at the server side

● Dependability and concurrent accesses to shared objects
○ Objects are replicated for persistence
○ Replication happens at the level of operations (method calls) 

- No shipping of full serialized state between replicas

- Shared objects with strong consistency guarantees
- Including for composed operations accessing multiple objects
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CRESON: server-side mapping
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Outline

• Introduction and motivation

• Server-side Object-NoSQL mapping with CRESON

• CRESON design

• LKVS abstraction

• Object management components

• State Machine Replication

• Guarantees

• Portage of an existing application, StackSync, to CRESON

• Client-side interface

• Evaluation
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CRESON: components

• LKVS: novel NoSQL storage abstraction
- Listenable Key-Value Store
- Extends key-value API 

• Object management logic atop the LKVS
- Implemented as part of the listener handlers
- Maintain multiple replicas of the object
- Implement state-machine replication (operation-based)

• Client-side integration with the Java language
- Using annotations (similar to JPA)
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Listenable Key/Value Store

• Classical Key/Value API
- void put(K k, V v)
- V get(K k)

• Two new calls
- void regListener(K k, Handler h, Listener l)
- void unregListener(K k, Listener l)
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LKVS illustrated
17



CRESON / RainbowFS kick-off / Pierre Sutra

LKVS illustrated
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LKVS illustrated
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LKVS illustrated
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LKVS illustrated
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LKVS illustrated
22



CRESON / RainbowFS kick-off / Pierre Sutra

LKVS illustrated
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Object management in CRESON (1)

• Client-side proxy

• First opening of object for key k by a client
- Not in DB: instantiate new object, server side
- Serialized in DB: use mapping, server side

• Object closed by last client for key k
- Object serialized, server side, stored in DB

• Method calls and object creation/closing 
are sent with put() calls for key k
- Intercepted by handlers registered with key k
- caller receives the result as a notification
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Object management in CRESON (2)
25

• Two types of handlers for each key

• One Session handler per client
- Associated with one listener client
- Ignore operation if from another client
- Forward to object handler otherwise

• Object handler owns actual object
- Issues method calls
- Send return values to session handlers
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State Machine Replication

● To survive faults, objects are replicated at the LKVS side
- Multiple copies of serialized objects
- Multiple in-memory instances of the same live shared object

● Operation-based replication
- replicas receive the same stream of operations
- Order is total, 

● Constraint: objects must be deterministic
- Reach unique state from any possible (state, operation) pair
- Easy to achieve if no use of independent pseudo-random numbers generator
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Putting everything together
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CRESON guarantees

✓ Strong consistency: linearizability

✓ Wait-freedom for shared objects

✓ Composition
- A shared object can call other objects
- Maintains linearizability

✓ Persistence

✓ Disjoint-access parallelism
- Accesses to distinct objects use distinct LKVS components

✓ Elasticity
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Use case and Interface

• Collaboration with EU project CloudSpaces
- Open-source Dropbox-like application
- Synchronization of user file system with cloud-stored file system
- Sharing of folders and files between users spaces

• Trace collected from Ubuntu U1 personal cloud service

• Data stored in OpenStack Swift

• Metadata requires strongly consistent storage
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Original Metadata Management 

• PostgreSQL relational database

• Performance: use of stored procedures implementing app. logic at server side

• Scalability: sharded (partitioned) database using PL/Proxy
• No support for elastic scaling
• No consistency (ACID) guarantees across shards
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Metadata Management with 
CRESON

• Logic for metadata management re-implemented in 
plain Java, as methods in StackSync’s classes

• Which objects to store in CRESON ? 

• Embedding Item, etc. to Workspace

• Portage was less than a week of effort

• Code is simpler and more coherent than with SQL

31

independent objects stored in CRESON

embedded objects
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CRESON interface
• Integration in Java (using AspectJ)

• using JPA

• @Entity(key = “id”) annotation

• Object o of this class stored in CRESON 
under key (classname+”:”+o.id)

• Store static field in CRESON under key 
(classname+”:”+id)
- Only applies to static fields!

• No further action required from developer

• Shared maps (e.g. deviceIndex) are 
transparently stored as collections in LKVS
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@Entity(key = "id")
public class Workspace {

  public UUID id;
  private Item root;
  private List<User> users;

  /* ... */

  public boolean isAllowed(User user) {
    return users.contains(user.getId());
  }
}

@Entity(key = "id")
public class Facade {

  @Entity(key = "deviceIndex")
  public static Map<UUID,Device> devices;

  @Entity(key = "workspaceIndex")
  public static Map<UUID,Workspace> workspaces;

  @Entity(key = "userIndex")
  public static Map<UUID,User> users;

  public UUID id;

  /* ... */

  public boolean add(Device device) {
    return deviceMap.putIfAbsent(

  device.getId(),device) == null;
  }
}
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CRESON implementation

• LKVS support added to Infinispan
- Industrial-grade NoSQL in-memory DB
- Basis for Red Hat JBoss Data Grid product
- CRESON integration (staging) as core ISPN feature

• Implementation in Java
- LKVS = 13,500 SLOC ; CRESON = 4,000 SLOC

• Optimizations (not covered)
- Listener mutualization
- Chaining calls idempotency
- Client-side caching 
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Evaluation

• Cluster of 8-core/8GB Xeon 2.5 GHz, switched 1 Gbps 
network

• 2 to 6 Infinispan servers (default = 3)
- Each server maintain a cache of 105 recently-used values (serialized 
objects after their closing)
- Passivated to disk in the background
- Replication factor is 2 by default
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Base Infinispan performance
35

write-dominat
ed workload

read-dominated workloads
(higher is better)
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Single-object performance
36

max 
single-key 

throughput

CRESON overhead 
for a single object

Accessing two 
objects in sequence

(higher is better)



CRESON / RainbowFS kick-off / Pierre Sutra

Performance with multiple objects
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(higher is better)

1 counter
2 counters
5 counters

10 counters

100 countersdisjoint access parallelism:
accessing distinct objects 

increases throughput
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StackSync performance: throughput
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(higher is better)(higher is better)

+ 2 additional PL/Proxy nodes

median performance 
using 6 servers: +50%
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StackSync performance: latency
39

(leftmost is better)
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Conclusion

• NoSQL databases: scalability, elasticity and performance
but object-SQL mapping is costly

• CRESON = callable shared objects NoSQL
- Novel LKVS abstraction 
- Simple programming model 

• Better performance and elasticity than PostgreSQL 

• Future work: support for queries over objects
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