
The Co-design and Proof of
an Available File System

Mahsa Najafzadeh
Marc Shapiro

 INRIA & Université Pierre et Marie Curie

Replicated File System

x

x

y

y

File-replication
–Low latency
–High availability
–Fault tolerance

Requirement:
Maintain the file system application invariants

X

2 ms 1 ms

CISE Analysis

1. Static analysis tool: verifies integrity invariant of
an application, above a weakly-consistent
database

X

[Gotsman et al. POPL 2016 ’Cause I’m Strong Enough:
Reasoning about Consistency Choices in Distributed
Systems]

CISE Rules to Prove Application is Correct

Commutativity:
Concurrent operations commute (convergence)
Effector Safety:
Every effect in isolation execution maintains the invariant
(sequential safety)
Stability:
Preconditions are stable under concurrency (concurrent safety)

If satisfied: the invariant is guaranteed in every possible
execution

X

System Model

• Full replication + Any number of replicas

• Each replica is sequential

• Generator + Effector Operation model

• Causal + Exactly once delivery

2

Operation Model

X

 Generator (@origin): Read state from one copy and
 map operation u to :

• Return value(uval)

ueffur1

uval

r2

origin replica

other replica
ueff

Operation Model

X

 Generator (@origin): Read state from one copy and
 map operation u to :

• Effector (ueff): State transformation applied at every
replica

uPRE

Precondition
Safety?

ueffur1

uval

r2

origin replica

other replica
ueff

Concurrency Control

3

Tokens≈ concurrency control abstractions
Tokens = {τ, …}

Conflict relation ⋈ ⊆ Tokens × Tokens
 Example - mutual exclusion tokens:
 Tokens = {τ}; τ ⋈ τ
An operation’s generator may acquire a set of
tokens

Operations associated with conflicting tokens
cannot be concurrent

A directory: a map of name to file system object (INode)

Dir: Name → INode

INode: Dir | File

Operations:

mkdir, addFile, rmFile, mvFile, updateFile, rmdir, mvDir.

Sequential Specification of the File System

4

Relations

• Parent relation: (A ↓ B) : A is parent of B
• Ancestor relation (root ↓+ A): root is an

ancestor of A
• Least Common Ancestor of nodes A and B

(LCA(A,B))

Correctness Criteria

Convergent: do replicas that delivered the same updates
have the same state?

Safe: are invariants preserved?
• Sequential: single operation in isolation maintains

invariant
• Concurrent execution maintains invariant

6

Tree Invariant

• Has a known Root.

• Root is an ancestor of every inode in the tree (reachability).

• Every inode, which has a name has exactly one parent, except the
root

• No cycle in the directory structure.

• Name of each inode is unique.

• No directory is a parent of itself.

7

Effector Safety:
Example= move requires precondition

• do not move directory under self

8

 uC

BA

root

 ueff

mvdir(C,A)
I uPRE I

C

BA

root

Concurrent adding nodes under the same name to a
directory are not commutative

Commutativity Rule:
Counter-Example

9

 o1=add(n) add(n,v)

add(n,u)

r1

r2

o2=add(n)

[n → u] [n → v]

[n → v]

effectoro1=add(n,u)

[n → u]effectoro2=add(n,v)

Concurrent Specification of the File System

10

Use replicated data types [Shapiro+ 2011]

Inodes implemented as CRDTs.

• Name Conflicts
Merge directories
Rename files

• Update/Remove Conflicts
Add-wins directory

Concurrently adding two directories under the same
name to the same parent directory merge these
two directories

Commutativity Rule:  
Co-design

11

 o1=add(n) add(n,v)

add(n,u)

r1

r2

o2=add(n)

[n → u]
w=u © v

[n → w]

[n → v]

effectoro1=add(n,u)

effectoro2=add(n,v)
w=v © u

[n → w]

A Commutative and Available File
System

Name Conflicts
• Merge directories
• Rename files

Update/Remove Conflicts

• add-wins directory

Mahsa Najafzadeh X

Stability Analysis:
counter-example

X

mvDir(B,A)

B is NOT ancestor of A

r1

r2
BA

root

BA

root

mvDirPRE: ¬ (B ↓+ A)

X

mvDir(B,A)

mvDir(A,B)

B is NOT ancestor of A

r1

r2
BA

root

BA

root

mvDirPRE: ¬ (B ↓+ A)

Stability Analysis:
counter-example

root

BA

X

mvDir(B,A)

mvDir(A,B)

B is NOT ancestor of A

r1

r2
BA

root

BA

root

root

BA

mvDirPRE: ¬ (B ↓+ A)

mvDirPRE: ¬ (B ↓+ A)

✘

Stability Analysis:
counter-example

12

mvDir(B,A)

mvDir(A,B)

B is NOT ancestor of A

r1

r2
BA

root
root

BA

BA

root

Stability Analysis:
counter-example+co-design

mvDirPRE: ¬ (B ↓+ A)

• Weaken the specification, e.g., GeoFs
• Add some concurrency control, to avoid mvDir ||mvDir

Fully Asynchronous File System

13

Allow concurrent moves.

Duplicate all the directories in the cycle(anomalous).

14

mvDir(B,A)

mvDir(A,B)

B is NOT ancestor of A

r1

r2
BA

root

Stability Analysis:
co-design

mvDirPRE: ¬ (B ↓+ A)

BA

root

AB

BA

root

AB

Mostly Asynchronous File System

• Make move (partially) synchronous
• Add tokens, avoid mvDir || mvDir
• A mutually exclusive token for each directory d ∈ Dir:

15

(τ(d) ⋈ τ(d))

16

Specification of Move Tokens

Token over Source directory A
 Token over Destination directory B

Tokens over Ancestors up to LCA

Tokens for mvDir(A,B) :

r1

r2

mvDir(A,B)

root

BA

LCA(A,B)

BA

TT T

T

Stability Analysis

17

mvDir(B,A)

mvDir(A,B)

r1

BA

root

{τ(B), τ(A)}

{τ(A), τ(B)}(τ(A) ⋈ τ(A))
(τ(B) ⋈ τ(B))

✘

✔

r2

BA

root

τ(A), {τ(e) | e ∈Node root ↓+ e∧ e ↓+
A }

Mahsa Najafzadeh22/04/16 18

GeoFS
root

FD

C

A

B

To move B to A: lock path to root

concurrent mvDir(F,D)
AND mvDir(A,B) 
is not possible

Mahsa Najafzadeh22/04/16 X

Removing Token Over Source
Directory

mvDir(A,B)

r1

{τ(B), τ(C)}

r2

root

FD

B

A C

H

Mahsa Najafzadeh X

Removing Token Over Source
Directory

root

FD

B

A C

H

mvDir(A,B)

mvDir(A,F)

r1

{τ(F)}

{τ(B), τ(C)}

r2

root

F

B

A C

H

root

FD

B

AC

H

D

Mahsa Najafzadeh X

Removing Token Over Source
Directory

FD

B

A C

H

mvDir(A,B)

mvDir(A,F)
{τ(F)}

root

F

B

A C

H

root

FD

B

AC

H

root

FD

B

AC

H

D

root

r1

r2

{τ(B), τ(C)}

Mahsa Najafzadeh X

Removing Token Over Destination
Directory

mvDir(A,B)

r1

{τ(A), τ(C)}

r2

root

F

B

A C

H

D

Mahsa Najafzadeh X

Removing Token Over Destination
Directory

mvDir(A,B)

mvDir(B,H)

r1

{τ(B),τ(A)}

{τ(A), τ(C)}

r2

root

F

B

A C

H

D

F

B

A C

H

root

D

root

FD

B

A C

H

Mahsa Najafzadeh X

Removing Token Over Destination
Directory

mvDir(A,B)

mvDir(B,H)

r1

r2

root

F

B

A C

H

root

FD

B

A C

H

root

FD

B

A C

H

D {τ(A), τ(C)}

{τ(B),τ(A)}

F

B

A C

H

root

D

Mahsa Najafzadeh X

Removing Token Over Ancestors
up to LCA

mvDir(A,B)

r1

{τ(A), τ(B)}

r2

root

F

B

A C

H

D

Mahsa Najafzadeh X

mvDir(A,B)

mvDir(C,H)

r1

{τ(C),τ(H)}

{τ(A), τ(B)}

r2

root

F

B

A C

H

root

F

B

A C

H

root

FD

B

A C

H

D

D

Removing Token Over Ancestors
up to LCA

Mahsa Najafzadeh X

mvDir(A,B)

mvDir(C,H)

r1

{τ(A), τ(B)}

r2

root

F

B

A C

H

root

F

B

A C

H

root

FD

B

A C

H

root

FD

B

A C

H

D

D

{τ(C),τ(H)}

Removing Token Over Ancestors
up to LCA

Mahsa Najafzadeh 19

Intuition For Move Tokens

mvDir(A,B)

r1

r2

LCA(A,B)

BA

Assume that these tokens are not
sufficient and we have loop over a
node, called E, due to concurrent
move operations:

E↓….. B ↓ A …… ↓E

Mahsa Najafzadeh X

Intuition For Move Tokens

mvDir(A,B)

r1

r2

LCA(A,B)

BA

consider the left side of the loop

E↓C….. B ↓ A ……H ↓E

Mahsa Najafzadeh X

Intuition For Move Tokens
E↓C….. B ↓ A ……H ↓E

The left side implies that one of B’s ancestors, called C,
concurrently moves to E

mvDir(C,E):

Precondition: Directory E is not a descendent of C

mvDir(A,B)

r1

r2

mvDir(C,E)

Mahsa Najafzadeh X

mvDir(A,B)
r1

r3

mvDir(C,E)

Now, consider the right side of loop

The right side implies that E concurrently moves to
one of A’s descendants, called H

Tokens over directory H up to LCA(H,E)

r2
mvDir(E,H)

E↓C….. B ↓ A ……H ↓E

mvDir(E,H)

Mahsa Najafzadeh X

Intuition For Move Tokens

where is LCA(H,E)?

mvDir(A,B)
r1

r2

mvDir(C,E)

Mahsa Najafzadeh X

E↓C….. B ↓ A ……H ↓E

1) LCA(H,E) is located between A and LCA(A,B)

in this case moving E to H requires token over A
that conflicts with tokens for moving A to B

B

LCA(A,B)

A

H

LCA(H,E)

Mahsa Najafzadeh X

E↓C….. B ↓ A ……H ↓E

2) LCA(H,E) is located under A:

E is concurrently moved under A which is not
possible because this move operation needs to
acquire tokens conflicting with mvDir(A,B)

B

LCA(A,B)

A

H

LCA(H,E)

Exploiting More Parallelism

• Concurrent moves to the same destination directory
• Conflicting tokens for each directory A ∈ Dir:

source token τs(A) and destination token τd(A)

Mahsa Najafzadeh X

(τs(A) ⋈ τd(A))

r1

r2

mvDir(A,B)

root

BA

LCA(A,B)

BA

TT T

T

CISE Proof Tool’s Result 

Semantics #OP #Token #Invariant #Violation Time (ms)

Sequential 7 7 1 0 1297

Fully Async 7 0 1 1 2350

Mostly
Async

7 2 1 0 1570

Future Work

21
Q/A

• Implement the file system semantics
And compare their actual performance under real workloads
• Reason about the operation executions in the presence of

failure

Mahsa Najafzadeh22/04/16 X

Root Lock
root

FD

C

A B

To move A to B: lock whole tree

{τ(e) | e∈ Node, (τ(e) ⋈ τd(e)) }

no concurrent moves

Mahsa Najafzadeh22/04/16 X

Move tokens
root

FD

C

A B

lock whole tree lock path to root lock until LCA(B,A)

no concurrent moves

root

FD

C

A B

root

FD

C

A B

Mahsa Najafzadeh22/04/16 X

Concurrent Moves

To move A to B:

τs(A), τd(B), τd(C) τs(F), τd(D)

To move F to D:

root

FD

C

A B

root

FD

C

A B

Mahsa Najafzadeh22/04/16 X

GeoFS

To move B to A

root

FD

C

A

B

root

FD

C

A

B

To move F to D

lock path to root

Mahsa Najafzadeh

1. Static analysis tool for proving integrity invariants of
applications

2. A case study of the application of our analysis tool for
designing an efficient file system semantics

3. A set of useful invariant patterns + protocols

22/04/16

Thesis Contributions

X

Mahsa Najafzadeh

Efficiently Implementable Patterns of Invariants

• Some interesting classes of invariants

Relating consistency to invariants
• Which primitives guarantee which

invariants

22/04/16 X

