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Replicated File System

x

x

y

y

File-replication 
–Low latency 
–High availability
–Fault tolerance

Requirement: 
Maintain the file system application invariants

X

2 ms 1 ms



CISE Analysis

1. Static analysis tool: verifies integrity invariant of 
an application, above a weakly-consistent 
database

X

[Gotsman et al. POPL 2016 ’Cause I’m Strong Enough: 
Reasoning about Consistency Choices in Distributed 
Systems]



CISE Rules to Prove Application is Correct

Commutativity:
Concurrent operations commute (convergence)
Effector Safety:
Every effect in isolation execution maintains the invariant 
(sequential safety)
Stability: 
Preconditions are stable under concurrency (concurrent safety)

If satisfied: the invariant is guaranteed in every possible 
execution

X



System Model

• Full replication + Any number of replicas

• Each replica is sequential

• Generator + Effector Operation model 

• Causal + Exactly once delivery
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Operation Model

X

  Generator (@origin): Read state from one copy and              
  map operation u to : 

• Return value(uval )

ueffur1

uval 

r2

origin replica

other replica
ueff



Operation Model

X

  Generator (@origin): Read state from one copy and              
  map operation u to : 

• Effector (ueff): State transformation applied at every 
replica

uPRE

Precondition
Safety?

ueffur1

uval 

r2

origin replica

other replica
ueff



Concurrency Control 
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Tokens≈ concurrency control abstractions
Tokens = {τ, …}

Conflict relation ⋈ ⊆ Tokens × Tokens
 Example - mutual exclusion tokens:  
 Tokens = {τ};  τ ⋈ τ
An operation’s generator may acquire a set of 
tokens

Operations associated with conflicting tokens 
cannot be concurrent



A directory:  a map of name to file system object (INode)

Dir:  Name → INode

INode: Dir | File

Operations:  

mkdir, addFile, rmFile, mvFile, updateFile, rmdir, mvDir. 

Sequential Specification of the File System
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Relations

• Parent relation: (A ↓ B) : A is parent of B
• Ancestor relation (root  ↓+   A):  root is an 

ancestor of A
• Least Common Ancestor of nodes A and B 

(LCA(A,B))



Correctness Criteria

Convergent: do replicas that delivered the same updates 
have the same state?

Safe: are invariants preserved?
• Sequential: single operation in isolation maintains  

invariant
• Concurrent execution maintains invariant
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Tree Invariant

• Has a known Root.

• Root is an ancestor of every inode in the tree (reachability).

• Every inode, which has a name has exactly one parent, except the 
root

•  No cycle in the directory structure.

• Name of each inode is unique. 

• No directory is a parent of itself. 
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Effector Safety: 
Example= move requires precondition

• do not move directory under self
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     uC

BA

root

     ueff

mvdir(C,A)
I uPRE I

C

BA

root



Concurrent adding nodes under the same name to a 
directory are not commutative

Commutativity Rule: 
Counter-Example
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    o1=add(n) add(n,v)

add(n,u)

r1

r2

o2=add(n)

[n → u] [n → v]

[n → v]

effectoro1=add(n,u)

[n → u]effectoro2=add(n,v)



Concurrent Specification of the File System
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Use replicated data types [Shapiro+ 2011]

Inodes implemented as CRDTs.

• Name Conflicts
Merge directories
Rename files 

• Update/Remove Conflicts
Add-wins directory



Concurrently adding two directories under the same 
name to the same parent directory merge these  
two directories 

Commutativity Rule:  
Co-design
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    o1=add(n) add(n,v)

add(n,u)

r1

r2

o2=add(n)

[n → u]
w=u © v

[n → w]

[n → v]

effectoro1=add(n,u)

effectoro2=add(n,v)
w=v © u

[n → w]



A Commutative and Available File 
System

Name Conflicts
• Merge directories
• Rename files 

Update/Remove Conflicts

• add-wins directory

Mahsa Najafzadeh X



Stability Analysis: 
counter-example

X

mvDir(B,A)

B is NOT ancestor of A

r1

r2
BA

root

BA

root

mvDirPRE: ¬ (B ↓+ A )



X

mvDir(B,A)

mvDir(A,B)

B is NOT ancestor of A

r1

r2
BA

root

BA

root

mvDirPRE: ¬ (B ↓+ A )

Stability Analysis: 
counter-example

root

BA



X

mvDir(B,A)

mvDir(A,B)

B is NOT ancestor of A

r1

r2
BA

root

BA

root

root

BA

mvDirPRE: ¬ (B ↓+ A )

mvDirPRE: ¬ (B ↓+ A )

✘

Stability Analysis: 
counter-example
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mvDir(B,A)

mvDir(A,B)

B is NOT ancestor of A

r1

r2
BA

root
root

BA

BA

root

Stability Analysis: 
counter-example+co-design

mvDirPRE: ¬ (B ↓+ A )

• Weaken the specification, e.g., GeoFs 
• Add some concurrency control, to avoid mvDir ||mvDir



Fully Asynchronous File System
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Allow concurrent moves.

Duplicate all the directories in the cycle(anomalous). 
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mvDir(B,A)

mvDir(A,B)

B is NOT ancestor of A

r1

r2
BA

root

Stability Analysis: 
co-design

mvDirPRE: ¬ (B ↓+ A )

BA

root

AB

BA

root

AB



Mostly Asynchronous File System

• Make move (partially) synchronous 
• Add tokens, avoid mvDir || mvDir
• A mutually exclusive token for each directory d ∈ Dir:  
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(τ(d) ⋈ τ(d) )
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Specification of Move Tokens

Token over Source directory A 
 Token over Destination directory B 

Tokens over Ancestors up to LCA

Tokens for mvDir(A,B) :

r1

r2

mvDir(A,B)

root

BA

LCA(A,B)

BA

TT T

T



Stability Analysis 
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mvDir(B,A)

mvDir(A,B)

r1

BA

root

{τ(B), τ(A)}

{τ(A), τ(B)}(τ(A) ⋈ τ(A) )
(τ(B) ⋈ τ(B) )

✘

✔

r2

BA

root



τ(A), {τ(e) | e ∈Node  root ↓+ e∧ e ↓+ 
A }

Mahsa Najafzadeh22/04/16 18

GeoFS
root

FD

C

A

B

To move B to A: lock path to root 

concurrent mvDir(F,D) 
AND mvDir(A,B) 
is not possible
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Removing Token Over Source 
Directory 

mvDir(A,B)

r1

{τ(B), τ(C)}

r2

root

FD

B

A C

H
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Removing Token Over Source 
Directory 

root

FD

B

A C

H

mvDir(A,B)

mvDir(A,F)

r1

{τ(F)}

{τ(B), τ(C)}

r2

root

F

B

A C

H

root

FD

B

AC

H

D
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Removing Token Over Source 
Directory 

FD

B

A C

H

mvDir(A,B)

mvDir(A,F)
{τ(F)}

root

F

B

A C

H

root

FD

B

AC

H

root

FD

B

AC

H

D

root

r1

r2

{τ(B), τ(C)}
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Removing Token Over Destination 
Directory 

mvDir(A,B)

r1

{τ(A), τ(C)}

r2

root

F

B

A C

H

D
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Removing Token Over Destination 
Directory 

mvDir(A,B)

mvDir(B,H)

r1

{τ(B),τ(A)}

{τ(A), τ(C)}

r2

root

F

B

A C

H

D

F

B

A C

H

root

D

root

FD

B

A C

H
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Removing Token Over Destination 
Directory 

mvDir(A,B)

mvDir(B,H)

r1

r2

root

F

B

A C

H

root

FD

B

A C

H

root

FD

B

A C

H

D {τ(A), τ(C)}

{τ(B),τ(A)}

F

B

A C

H

root

D
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Removing Token Over Ancestors 
up to LCA

mvDir(A,B)

r1

{τ(A), τ(B)}

r2

root

F

B

A C

H

D
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mvDir(A,B)

mvDir(C,H)

r1

{τ(C),τ(H)}

{τ(A), τ(B)}

r2

root

F

B

A C

H

root

F

B

A C

H

root

FD

B

A C

H

D

D

Removing Token Over Ancestors 
up to LCA
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mvDir(A,B)

mvDir(C,H)

r1

{τ(A), τ(B)}

r2

root

F

B

A C

H

root

F

B

A C

H

root

FD

B

A C

H

root

FD

B

A C

H

D

D

{τ(C),τ(H)}

Removing Token Over Ancestors 
up to LCA
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Intuition For Move Tokens

mvDir(A,B)

r1

r2

LCA(A,B)

BA

Assume that these tokens are not 
sufficient and we have loop over a 
node, called E,  due to concurrent 
move operations:

E↓….. B ↓ A …… ↓E
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Intuition For Move Tokens

mvDir(A,B)

r1

r2

LCA(A,B)

BA

consider the left side of the loop

E↓C….. B ↓ A ……H ↓E



Mahsa Najafzadeh X

Intuition For Move Tokens
E↓C….. B ↓ A ……H ↓E

The left side implies that one of B’s ancestors, called C,   
concurrently moves to E 

mvDir(C,E): 

Precondition: Directory E is not a descendent of C 

  
mvDir(A,B)

r1

r2

mvDir(C,E)
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mvDir(A,B)
r1

r3

mvDir(C,E)

Now, consider the right side of loop

The right side implies that E concurrently  moves to 
one of A’s descendants, called H

Tokens over directory H up to LCA(H,E) 

r2
mvDir(E,H)

E↓C….. B ↓ A ……H ↓E

mvDir(E,H)
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Intuition For Move Tokens

where is LCA(H,E)?

mvDir(A,B)
r1

r2

mvDir(C,E)
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E↓C….. B ↓ A ……H ↓E

1) LCA(H,E) is located between A and LCA(A,B)

in this case moving E to H requires token over A 
that conflicts with tokens for moving A to B 

B

LCA(A,B)

A

H

LCA(H,E)
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E↓C….. B ↓ A ……H ↓E

2) LCA(H,E) is located under A: 

E is concurrently moved under A which is not 
possible because this move operation needs to 
acquire tokens conflicting with mvDir(A,B)

B

LCA(A,B)

A

H

LCA(H,E)



Exploiting More Parallelism 

• Concurrent moves to the same destination directory
• Conflicting tokens for each directory A ∈ Dir:  

source token τs(A) and destination  token τd(A)

Mahsa Najafzadeh X

(τs(A) ⋈ τd(A) )

r1

r2

mvDir(A,B)

root

BA

LCA(A,B)

BA

TT T

T



CISE Proof Tool’s Result 

 

Semantics #OP #Token #Invariant #Violation Time (ms)

Sequential 7 7 1 0 1297

Fully Async 7 0 1 1 2350

Mostly 
Async

7 2 1 0 1570



Future Work

21
Q/A

• Implement the file system semantics 
And compare their actual performance under real workloads
• Reason about the operation executions  in the presence of 

failure

 



Mahsa Najafzadeh22/04/16 X

Root Lock
root

FD

C

A B

To move A to B:  lock whole tree 

{τ(e) | e∈ Node, (τ(e) ⋈ τd(e) ) }

no concurrent moves
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Move tokens
root

FD

C

A B

lock whole tree lock path to root lock until LCA(B,A) 

no concurrent moves

root

FD

C

A B

root

FD

C

A B
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Concurrent Moves

To move A to B: 

τs(A), τd(B), τd(C) τs(F), τd(D)

To move F to D: 

root

FD

C

A B

root

FD

C

A B
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GeoFS

To move B to A

root

FD

C

A

B

root

FD

C

A

B

To move F to D 

lock path to root 



Mahsa Najafzadeh

1. Static analysis tool for proving integrity invariants of 
applications

2. A case study of the application of our analysis tool for 
designing an efficient file system semantics

3. A set of useful invariant  patterns + protocols

22/04/16

Thesis Contributions

X
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Efficiently Implementable Patterns of Invariants 

• Some interesting classes of invariants

Relating consistency to invariants
• Which primitives guarantee which 

invariants

22/04/16 X


