4

SORBONNE

The Co-design and Proof of
an Available File System

Mahsa Najafzadeh
Marc Shapiro

INRIA & Université Pierre et Marie Curie

Replicated File System

File-replication o i
—Low latency JB . __:\ :
_High availability 3
—Fault tolerance

Requirement:
Maintain the file system application invariants

CISE Analysis

|. Static analysis tool: verifies integrity invariant of
an application, above a weakly-consistent
database

[Gotsman et al. POPL 2016 '’Cause I'm Strong Enough:
Reasoning about Consistency Choices in Distributed
Systems]

CISE Rules to Prove Application is Correct

Commutativity:

Concurrent operations commute (convergence)

Effector Safety:

Every effect in isolation execution maintains the invariant
(sequential safety)

Stability:

Preconditions are stable under concurrency (concurrent safety)

If satisfied: the invariant is guaranteed in every possible
execution

System Model

* Full replication + Any number of replicas

* Each replica is sequential
* Generator + Effector Operation model

e (Causal + Exactly once delivery

Operation Model

Uvyal
u
u' eff

origin replica r o
. ~ Ueff
other replica I2)

Generator (@origin): Read state from one copy and
map operation u to :

* Return value(uyal)

Operation Model
Ura

. UPRE u
o u' eft
O”gln rePIICG rl _C\‘
Ue
other replica I2) i

Generator ((@origin): Read state from one copy and

map operation u to :
o Effector (u.p): State transformation applied at every

replica

Concurrency Control

Tokens~ concurrency control abstractions
Tokens = {T, ...}

Conflict relation X C Tokens X Tokens
Example - mutual exclusion tokens:
Tokens = {T}; TX T

An operation’s generator may acquire a set of
tokens

Operations associated with conflicting tokens
cannot be concurrent

Sequential Specification of the File System

A directory: a map of name to file system object (INode)
Dir: Name — INode
INode: Dir | File
Operations:

mkdir, addFile, rmFile, mvFile, updateFile, rmdir, mvDir.

Relations

* Parent relation: (A 1 B) : A is parent of B

* Ancestor relation (root {* A): root is an
ancestor of A

* Least Common Ancestor of nodes A and B

(LCA(A,B))

Correctness Criteria

Convergent: do replicas that delivered the same updates
have the same state!

Safe: are invariants preserved!?

+ Sequential: single operation in isolation maintains
Invariant

« Concurrent execution maintains invariant

Tree Invariant

Has a known Root.

Root is an ancestor of every inode in the tree (reachability).

Every inode, which has a name has exactly one parent, except the
root

No cycle in the directory structure.
Name of each inode is unique.

No directory is a parent of itself.

Effector Safety:
Example= move requires precondition

root

A
. / \
— mvdir(C,A) A %
A l u UPRE Ueff I
A// \\B — I

* do not move directory under self

Commutativity Rule:
Counter-Example

01=add(nmr01=[idﬂn’5{ add(nY) [n - v)
I O -

effector,2=add(n,v) n — add(n,u) (n = u]
Y,

02=add(n)

Concurrent adding nodes under the same name to a
directory are not commutative

Concurrent Specification of the File System

Use replicated data types [Shapiro™ 201 1]
Inodes implemented as CRDTs.

e Name Conflicts

Merge directories
Rename files

* Update/Remove Conflicts
Add-wins directory

Commutativity Rule:

Co-design
=add effectoro=add(n,u) w=u© v
0/=add(n n — u] add(ny) = W]
I+ O ‘ R
dd w=v O u
y effectoroz-add(ny) - _, addine)

02=add(n)

Concurrently adding two directories under the same
name to the same parent directory merge these
two directories

A Commutative and Available File
System

Name Conflicts

* Merge directories
* Rename files

Update/Remove Conflicts

* add-wins directory

Stability Analysis:

counter-example

B is NOT ancestor of A

mvDirpre: = (B 1t A)

I

B is NOT ancestor of A

Stability Analysis:
counter-example

root

mvDirere: 1 (B L*A)

r

B

1
root
/ \ myv
y ‘

I

X

Dir(A,B : B
% - %

7
A B
mvDIrBAT™
A
root

>
>

Stability Analysis:
counter-example

mvDirpre: 1 (B 1T A)

B is NOT ancestor of A root
L)

r

’ A
/ \ mvDir(A,B
" %o A

2

mm
A

>
>

X

mvDirpre: 2 (B 17 A)

Stability Analysis:
counter-example+co-design

B is NOT ancestor of A root
L)

D~ B 1A) | AT~

>
r 1 roo
roo

/ \ mvDir(A,B
) %.

* Weaken the specification, e.g., GeoFs

+ Add some concurrency control, to avoid mvDir ||mvDir

12

Fully Asynchronous File System

Allow concurrent moves.

Duplicate all the directories in the cycle(anomalous).

Stability Analysis:
co-design

B is NOT ancestor of A

mvDirere: 1 (B L*A)

r

1
/ \ mvDir(A,B
) %.

14

Mostly Asynchronous File System

* Make move (partially) synchronous
* Add tokens, avoid mvDir || mvDir
* A mutually exclusive token for each directory d € Dir:

(T X T(g))

Specification of Move Tokens
Tokens for mvDir(A,B) :

ﬂ Token over Source directory A
I’) Token over Destination directory B

I’) Tokens over Ancestors up to LCA

\®
mvDir(A,B)

N\
1 O/ \A‘ A\)

1)6

Stability Analysis

{Te), Tw}
mvDir(B,A) v

1 -@ >

/\ (T X Tiw) {T, Tr)}

‘ (Tey X Teg)) .

A 5 mvDir(A,B) X
>

&

GeoFS

root

A

To move B to A:lock path to root

T(A), {T(e) | e eNode root l+ €re l+A }

22/04/16

Mahsa Najafzadeh

concurrent mvDir(ED)

AND mvDir(A,B)
is not possible

18

Removing Token Over Source

Jal

7
/N0

A

C

AN

AN

A3

r1”

Directory
Te), To)
mvDir(A,B)

C}

22/04/16

Mahsa Najafzadeh

Removing Token Over Source

Iaa Directory
~B = {Tp, T
c mvDir(A,B)
~ 0B
CF @
{-BE)}(AF PN
myvDir(A,
/@J\ CS A.W
4 ¥ m [{/ \¥
_ N N N
N\ C\
H B Mahsa Najafzadeh B H

Removing Token Over Source

N Directory
~B = {Tp, T
A c mvDir(A,B)
~ 0B
r = @
{7}
valr(ACS /\
I
root! W
D F m 3’/ \\F
A /\c N\ AN
N\ C\
H B Mahsa Najafzadeh B H

Removing Token Over Destination
N Directory

T T
n_ DO {Tw, Ty

A c mvDir(A,B)

Mahsa Najafzadeh

Removing Token Over Destination

Yo Directory

n_N\0O {Tw, Top
LS mvDir(A,B)

i -

{T(B),T(A)}
mVDiI‘(B,H /\
2 ®
root W
/
D/ \F . \\F
Z \ /\
A y =
a7 .
H B m Mahsa Najafzadeh H_/B

Removing Token Over Destination

Yo Directory

n_N\0O {Tw, Top
LS mvDir(A,B)

o
N\
{T(B),T(A)} IA ¢]
mVDiI‘(B,H /\ _
& ‘—‘S-L)
root W
/
D/ \F . \\F
Z \ /\
A ~ -
e I .
H B ﬂ Mahsa Najafzadeh H_/B

Removing Token Over Ancestors
roQt

RN up to LCA
B N {Tw, Ty

- Cﬁ mvDir(A,B)
(1 [=]6) O
I+ >.

Mahsa Najafzadeh

Removing Token Over Ancestors
roQt

AN up to LCA
B N {Tw, Ty

- Cﬁ mvDir(A,B)
(.1 [=]60 O
1 @

{To, T}
Dir(C,H
r, mvDir(C,H) ~— ™
roQt roQt
VN VAN

@ 6 =

A C A C
AN AN
H B Mahsa Najafzadeh | H B

Removing Token Over Ancestors
roQt

RN up to LCA
B N {Tw, Ty

- ~ mvDir(A,B)
3o

Mahsa Najafzadeh

Intuition For Move Tokens

Assume that these tokens are not

sufficient and we have loop over a
node, called E, due to concurrent
move operations:

El....slA

mvDir(A,B)

O<F. >

Mahsa Najafzadeh 19

Intuition For Move Tokens
consider the left side of the loop

ElC....s+A . u\E

mvDir(A,B)

4 e

Mahsa Najafzadeh

Intuition For Move Tokens
EIC...slA 4 iE

The left side implies that one of B’s ancestors, called C,

concurrently moves to E
mvDir(C,E):

Precondition: Directory E is not a descendent of C

mvDir(A,B)

r, O/ \.

mvDir(C,E)

A.
Mahsa Najafzadeh

ElIC....gd A HE
Now, consider the right side of loop

The right side implies that E concurrently moves to
one of A’s descendants, called H

mvDir(E,H)

Tokens ov '%IL{:% tory H up to LCA(H,E)

mvDi e
@
mvDir(C,E)

mvDir(E,H)CCDD//-\:A‘

Mahsa Najafzadeh

Intuition For Move Tokens

where is LCA(H,E)?

mvDir(A,B)
& Oo———e
mvDir(C,E)
Iz Q/-\A’
Mahsa Najafzadeh

) LCA(H,E) is located between A and LCA(A,B)

in this case moving E to H requires token over A
that conflicts with tokens for moving A to B

Mahsa Najafzadeh

LCA(H,E)

H

2) LCA(H,E) is located under A:

E is concurrently moved under A which is not
possible because this move operation needs to
acquire tokens conflicting with mvDir(A,B)

Mahsa Najafzadeh

Exploiting More Parallelism

LCAA,B)

‘ rog

= N
mvDir(A,B .
. (A.B) \A‘ \)

>

I

>
* Concurrent moves to the same destination directory

* Conflicting tokens for each directory A € Dir:
source token T and destination token Ty

(T X Tam)

Mahsa Najafzadeh

CISE Proof Tool’s Result

Semantics |[#OP |#Token |#lnvariant |#Violation |[Time (ms)

Sequential |7 7 I 0 1297
Fully Async |7 0 I I 2350
Mostly 7 2 I 0 1570

Async

Future Work

* Implement the file system semantics

And compare their actual performance under real workloads

* Reason about the operation executions in the presence of
failure

Q/A

Root Lock

rooz‘m
n-< B

D F
0 -
AN no concurrent moves
0 :

To move A to B: lock whole tree

{T(e) | ec Node, (T(e) ™ Ta(e))}

22/04/16 Mahsa Najafzadeh

B =p

7
N\

A

lock whole tree

22/04/16

\

Move tokens

[

v U AN

roQt

¥ g F

/\

N\

Ny

A

B

N\
/e

no concurrent moves

= lock path to root

/

Mahsa Najafzadeh

“ lock until LCA(B,A)

Concurrent Moves

B/\ Eﬂt‘/\ﬂ

N\ : N\
/C\m /C\
mA B ﬂ A B

To move A to B: E To move F to D:

Ts), Ta), Td(0) Ty, TdD)

22/04/16 Mahsa Najafzadeh

To move Bto A

22/04/16

lock path to root

Mahsa Najafzadeh

To move Fto D

Thesis Contributions

3. A set of useful invariant patterns + protocols

Efficiently Implementable Patterns of Invariants

* Some interesting classes of invariants

Relating consistency to invariants

* Which primitives guarantee which
Invariants

